学年

質問の種類

数学 高校生

複素数平面の質問です 赤線のところで共役複素数をとる理由が分かりません、教えてください

Think 例題 1 複素数平面と極形式 (365) C2-17 C2.9 複素数平面での平行四辺形の頂点 **** 複素数平面上に4点A (1-2i), B(z), C(iz), Dz)を定める。 四角形 ABCD が平行四辺形であるとき, 複素数を求めよ。 考え方 四角形 ABCD が平行四辺形であることをベクトルで表すと, AB=DC であるから. 複素数平面でA(a),B(B), C(y). www B-a=y-8 である. 四角形 ABCD が平行四辺形より, AB= DC, AB//DC 解答 である. よって つまり、 arg z-(1-2i)=iz-z z=(i-1)z+(1-2) arg 2 COA ①の両辺の共役複素数をとると, z=(-i-1)z+(1+2i) ここに①を代入すると CAD(z) '+'AO)SAA(1-2i) 中B(z) 01880] (9) z=(-i-1){(i-1)z+(1-2)}+(1+2ź) したがって, =2z-2+3iary++(n)=(d+hp)+(hd- 福門によって、 id=p ib+3=8/ z=2-31-80 (6)=AO ib-3- (別解) 四角形ABCD が平行四辺形のとき, 対角線 AC70 とBD の中点は一致するから、差 (5%) (1-2i)+iz_z+えすると 2 (E) x 2点α βを結ぶ線分 第5号 Focus (03 したがって, よって, S2 (-)AM 01: の中点は, a+B 2 門 p.2-52 参照) (1-2)+iz=2+2 (1-iz+z=1-2i BO①の両辺の共役複素数をとると, (1+i)z+z=1+2i... ② ① ×(1+i)-② より を消去すると qUq912) (A) ++ COB 2=2-3 A BOC 四角形ABCD が平行四辺形 +AO ⇔AB=DC または AD=BĆ あるいは、 対角線の中点が一致 z=a+bi(a,bは実数) とおくと, z-a-bi これらを,z(1-2)=iz-2に代入して解くこともできる。 RS DO Job 外心は一致していること これより 練習 ** 例題 C2.9 の4点 A, B, C, D が平行四辺形の頂点となるような複素数zのうち, C2.9 例題 2.9で求めた z=2-3i 以外の z をすべて求めよ.

回答募集中 回答数: 0
数学 高校生

(1)の解答の最後の式の−1する理由が分かりません。 どなたか教えて頂けますと幸いです! よろしくお願いします🙇

例題 206 三角形の個数(2) A1, A2, A3, ..., A12 を頂点とする正十二角形が ある. この頂点のうち3点を選んで三角形を作るとき, 0 次の個数を求めよ. (1) 二等辺三角形 (2)互いに合同でない三角形 20 A12 *** A1 A2 A3 A11 A4 A10 A5 A9 As A A6 分線について対称になる. 考え方 (1) 二等辺三角形は、右の図のように底辺の垂直二等 ま A1 つまり、頂角にくる点を固定して, 底角にくる点ま のとり方を考えればよい. I A10 # A1 A12 について同様に考えれば,個数を求める ことができるが, 正三角形になる場合に注意する. (2) 頂点間の間隔に着目する. 右の図のように①と②は合同 状 ①と③は合同でない. 0101 012 200s 0.05 解答 (1) A, を頂角とする二等辺三角形は, 線分A1A7 に関して対称な点の組 Q # A4 正三角形は他の から見ても二等 角形なので (A2, A12), (A3, A11), (A4, A10), (A5, A9),セは て数えてしまう A9 A5 coolco (A6, A8) の5通りの A7 頂点は12個より, 5×12=60 (個) 03 このうち, 正三角形となる4個の三角形は3回重複正三角形とな 〇〇〇して数えている。 (A1, A5, Ag か 18 よって 60-(3-1)×4=52 (個)合 (A2, A6. Al (2) 1つの頂点をへ

回答募集中 回答数: 0
数学 高校生

(1)の解答にある最後の式の−1をなぜするのかが分からないです! どなたか教えて頂けますと幸いです。よろしくお願いします🙇

例題 206 三角形の個数(2) A1, A2, A3, ..., ある。この頂点のうち3点を選んで三角形を作るとき, A12 を頂点とする正十二角形が A12 A1 A2 A1 A3 A10 AA A9 A5 次の個数を求めよ. A8 A7 A6 (1)二等辺三角形 (2) 互いに合同でない三角形 分線について対称になる. 方 (1) 二等辺三角形は、 右の図のように底辺の垂直二等 A₁ A1 A12 について同様に考えれば,個数を求める つまり、頂角にくる点を固定して, 底角にくる点ま のとり方を考えればよい. 0 A10 # # AA T T ことができるが,正三角形になる場合に注意する. 3 (2) 頂点間の間隔に着目する. ① 右の図のように①と②は合同 で,①と③は合同でない. 695 01 01st 2000s 05.05 ■ (1) A」 を頂角とする二等辺三角形は, 線分A1A7 に関して対称な点の組 (A2, A12), (A3, A11), A1 (A4, A10), (A5, A9), Ag AA5 正三角形は他の から見ても二等 角形なので重 て数えてしまう blood (A6, A8) の5通り A7 頂点は12個より, 5×12=60 (個) して数えている。 このうち, 正三角形となる4個の三角形は3回重複 正三角形とな A5, Ag (A1, よって, 60-(3-1)×4=52 (個) (A2, A6, Al 2) 1つの頂点をへ

回答募集中 回答数: 0
現代文 高校生

高一!気を見る森を見るについて質問です!なぜ人間は部分的な違いがある図形よりも、全体的な違いがある図形の方が見つけやすいのか教えてください

る傾向が強い。例えば複数の図形の中から仲間外れを探すとき、部分的な違いがある図形 よりも、全体的な違いがある図形のほうが見つけやすい。このことは、目に入るものを常 に「何か」としてラベル付けして見ようとする、人間の認知的な癖とも関係している。例 えば、虫食いの葉っぱに顔を見つけるとき。一つ一つの虫食いの穴を、ここは目、ここは 口、と顔のスキーマの要素に当てはめて、ひとまとまりとして捉える。人間が物を「何か」 として認知したり、見立てたりするときには、ゲシュタルト的な見方をしているのだ。 ⑨ 私たちは、いったん「何か」としてまとまりで認知すると、細かい部分を見落としがち だ。逆に、細かい部分にとらわれていると、全体が見えなくなる。 ⑩視点の倍率の切り替えは、かなり意識的に行う必要がある。 1 デッサンでは、物を「何か」として「認知」する前の一次的な視覚情報、すなわち「知 p 覚」を描こうとする。まとまりではなく、部分に注目するということだ。でも部分だけに 注目して描いていると、全体のプロポーションにひずみが出やすい。だからときどきキャ バスから離れて全体を確認する。 9 3スキーマ schema ここでは、認識の枠組 みのこと。もとは、指 要図式などの意。 プロポーション proportion 釣り合い 調和。 つまりデッサンのときは、部分的な見方と全体的な見方を行き来する。それも両極では なく、さまざまな倍率で形を階層的に捉える必要がある うに思う。

回答募集中 回答数: 0
1/1000