学年

質問の種類

数学 高校生

2531の問題において、なぜこの変形ができるのでしょうか。

ZXK -TT Cos=sin= 13 複素数平面 基本 22) るのはどんな場合か。ただし20 Pi (21) - zo) 180° 解答 (1) 21+222=122+12 +2r20001-4 であるから(問題2529) 121221=VP12+122+2172cos(01-02) =V (2)|21 + 22|=2+122+2200(01-02) VT12+2222 (-1 cos(01-02)≤1) =|72|+|2|=|21|+|22| (3)上の不等式で等号が成り立つのは または 20で cos(01-02)=1のとき よって, 等号は 10 または 22=0または と 01) 研究 複素数平面上で 21, 22および2+を 点をそれぞれP1, P2 およびPとする。 原点O と P1, P2が一直線上にあるとき, PA じ直線上にあって, OP1, OP2 が同じ向きな で 01-02=360°xn(n=0, 1, 2, ...) のとき、 (3x+ya+aẞ) 11 Br 1 + + Y a a (a++) (By+a+a)(a+3+2) (7)(1/+/+/1/1) a =(a+B+2)(B)+ya+αβ) R2 R2 By+ya+aß k=a+B+71 (By+ra+aβ)(By+ra+aβ) とおくと20 ? (a+B+)(a+B+) (y+ya+aß) (7+7+āß) (a+B+1)(a+B+7) = R² 与式==R ド・モアブルの定理 § 1. 複素数平面 よって、nを負の整数とし, n=-mとおけば 803 (cos0+isin0)"={(cos0+isin0)''}" ={cos(-0)+isin(-0)}" mは正の整数であるから {cos(-0)+isin(-0)}'' = cos(-me)+isin(-m0) ∴. (cos0+isin0)"=cosn0+isin no 2533. 〈ド・モアブルの定理〉 基本 nは正の整数で,=1であるとき 0 がどのような実数値であっても (cosO+isin0)" =cosno+isinne が成り立つことを,数学的帰納法によって 証明せよ。 -2532. 〈ド・モアブルの定理〉 基本 解答] n は整数であるから OP=OP1+OP2 ..|21+22|=|21|+|22| OP1, OP2 が反対向きならば (1) (cosa+isina)(cosβ+isinβ) 次の等式を証明せよ。ただし,i=V-1 とする。 (cos0+isin0)" =cosnl+isinn0 において, n=1のとき x(cosy+isiny) OP=OP1 ~ OP2 ...|21 +22|=|21|~|22| =cos(a+β+y)+isin(a+β+y) O. P1, P2 が一直線上にないときPOP を2隣辺とする平行四辺形の頂点で (2) nが正の整数のとき OP1 ~ PiPOP < OP1 +P,P 2 P.POP2 であるから sin 02 ) |21|~|32|<|21 +22| <|21|+|22| P1 3 1) ① ② ③ をまとめて |21|~|22|≦|21+2 | =1+22], |31|+|22| -011 る る。 基本 この結果を三角不等式ということがある。 2531. 〈複素数の絶対値> (cos a + isina) (cos a2+ i sin a2) ...(cos an+isinan) (cos0+isin0)=cosno+isinno (1) (cosa +isina) (cosβ+isinβ) = (cos a cosẞ-sina sin ẞ) + i(sinacos β + cosasin β) = cos(a + β)+isin(a+β) :: {cos(a +β) +isin(a+β)}(cosy+isiny) = cos{(a +B)+r}+isin{(a +B)+y} =cos(a+β+2)+isin (a +β+7) (2) (1) と同様にして ①の左辺 = cose+isin0 ①の右辺 = cos0+isin0 よって、この場合, 等式① は成り立つ。 n=kの場合、①の成立を仮定すれば (cos0+isin0) = cosk0+isink0 (cosQ+isin0)k+1 (cos0+isin0) (cosQ+isin0) = (cos0+isin0) × (cosk0 +isink0 ) = (cosocosko-sin Asink0) +i (sin Acosk0 + cos0sink0 ) =cos(k+1)0+isin(k + 1)0 ......2 ②はn=k+1の場合も等式①の成り立つことを 示している。 よって、数学的帰納法により①はnが どんな正の整数でも成り立つ。 2534. 〈n 乗の計算〉 基本 複素数平面上において、原点を中心とす る半径Rの円周上の3点を複素数o.d で表すとき By+ya+aß la+B+7l の値を求めよ。 ただし, a + β+7 キ によって する。 成立す [解答 点α, B, は点Oを中心 半径Rの円上 にあるから a=|a|=R2 同様にβ・万=・=R2 = cos(a1+a2++an) isin(a1+a2+・・・+αn) ここでa=a2=...=an=0とおけば (cos0+isine)" =cosn+isinno 研究ド・モアブルの定理はn が 0 または負の整 数のときも成り立つ。 =0のとき明らか。 n=1のとき (cos +isin 0) cos 0-isin 0 (coso+isino) (coso-isin0 ) = cos(-0) + isin(-0) 次の式の値を求めよ。 (cos 15°+isin 15°) 2535 〈n 乗の計算〉 解答 与式 = cos(15°×6)+isin(15°×6)=i 基本 √3+i=r(cos0+isin0) に適するr, 0 を求め、それによって(√3+i)の値を計 算せよ。ただし,r> 0 とする。 解答 V3 +i=rcos0+irsin0 から rcos0v3rsin0=1 2式を平方して辺々を加えると

解決済み 回答数: 1
数学 高校生

対数についての質問です。⑵においてm,nを正の整数と限定しているのは何故ですか?正の整数でなければ、左辺は偶数右辺は奇数にならないのですか?よろしくお願いします。

Think 914 例題171 無理数となる対数 2 対数と対数関数 339 **** log23の値を 2'=8, 3'=9,3243,2256 を利用して, 小数第 1位まで求めよ. () 10g103 が無理数であることを証明せよ. 103 の値を求めるので,対数をとるときは 底を2にするとよい . 考え方 (1) 与えられた条件を使って不等式を作る. (津田塾大改) <対数の定義> logaM=r⇔ α'=M (2)背理法を使って証明する. 有理数、無理数の定義は忘れないようにしよう。 (1)39 より 底2で両辺の対数をとると, log232=log29 を 解答 2 したがって 210g23=10g29より, 10g23= 2 したがって, 510g23=10g2243 より また,3243 より,底2で両辺の対数をとると, log235=log2243 log29 log28 log223 3log22 22 -=1.5 98 より, log23= log2243 log2256_810g22 5 5 -=1.6 5 以上より, log29>10g28 (底) >1であるから 対数を消せるように 2Dを利用する. 243 256 より, log2243<log256 1.5<logz3 <1.6 も同様 よって, 10g23の小数第1位までの値は, 1.5 m (2)10g 103 が有理数であると仮定すると, 10g103>0 だか ら,互いに素な正の整数m, n を用いて, 1.5 1.6 log23=1.5... 10が1より大き log 103= m n く、真数3が1より m とおける. 対数の定義より, 10 = 3 大きいので, log103 0 両辺を乗すると, 10m=3" ここでmnは正の整数だから, 左辺10" は偶数, 右 10 は2と53" は 辺3" は奇数となり 3しか素因数をもた の よって, 10g103 は無理数である. ない (偶数 奇数 Focus 無理数の証明 有理数と仮定して背理法 m 有理数は (m, n は互いに素) とおく n 第 5 章 練習 171 (2) 10g37 は有理数でないことを証明せよ。 (1)10g102 の値を2°512,21024 を利用して, 小数第1位まで求めよ。 (慶應義塾大) →p.34817 *** また

解決済み 回答数: 1
1/15