学年

質問の種類

数学 高校生

2番わかりません

3辺の長さが3, 4, xである三角形について、 次の問いに答えよ。 xのとり得る値の範囲を求めよ. この三角形が鋭角三角形となるようなxの値の範囲を求めよ。 [3+4>x x+3>4 【解答 (1) 3辺の長さが3,4,xの三角形が存在する条件は、 3/ APST yた三角形ができない。 三角形ができるためには, a+b> c が成り立つ必要がある。 考え方 (1) たとえば, 3辺の長さが3, 4,9では、 9 (2) 鋭角三角形となるのは,最大の角が鋭角のときである。 最長となる辺の対角が最大となるので, 4とxを比較する。 辺と角の大小関係は p.425 参照) Focus これより、 x+4>3 (2) (i) 1<x<4のとき,最大の角は長さが4の辺の対 角である.それをaとすると,α<90°となるため には, x2+32-42 2.x.3 cos a=- ->0 1<x< 7 これより これと 1<x<4 より √7<x<4 (ii) 4≦x<7のとき, 最大の角は長さがxの辺の対 角である. それをβとすると, β <90°となるため には, 32+42-x2 2・3・4 √x x2+32-40 の16 cos B=- これより, -5<x<5 これと 4≦x< 7 より , よって, (i), (ii) より, ->0 32 +42-x20 a, b,c を3辺の長さと する三角形が成立する条件 1524 4≦x<5 √7<x<5 HOL BISIDASTANY C 546506 SONG SHOW a+b>c と余弦定理 241 **** a a,b,c を3辺の長 さとするなら a>0. b>0, c>0 *** であるはずだが、こ れらは、三角形の成 立条件の3つの式か ら導かれる。 (次べ ージの Column 参照) 最大角をみるために は、場合分けが必要 一般に Aが鋭角 ⇒b²+c²>a² を用いてもよい。 b+c>ala-bl<c<a+b c+a>b cos A>06²+c²>a²C815 cos A=0b²+c²=a² Aが鋭角 Aが直角 Abcos A <0b²+c²<a²b\ Aが鈍角 <3+0 第4 0% 0<S Let And A すい 次の問いに答えよ.

回答募集中 回答数: 0
数学 高校生

80.2 「線分ABの垂直二等分線lに関してAと同じ側にあって、直線AB上にない1点をPとすると」 というこの文章からどうやって解答のような図を想像するのですか??

C ・C は は い 値 三角形の辺と角の大小 基本 例題 80 (1) ∠C=90°の直角三角形 ABCの辺BC上に,頂点と異なる点Pをとると, AP <ABであることを証明せよ。 (②) 線分ABの垂直二等分線ℓに関してAと同じ側にあって,直線AB上にな 1点をPとすると, AP<BP であることを証明せよ。 p.425 基本事項 ② 針三角形において,(辺の大小) (角の大小)が成り立つことを利用する。 (1) AP <AB の代わりに∠B<∠APB を示す。 2つの三角形△ABP と APC に分け て考える。 (2)(1) と同様に,∠PBA <<PAB を示すことを目指す。 l と線分PBとの交点をQとす ると,AQABは二等辺三角形であることに注目。 635 THOSE A CHART 三角形の辺の長さの比較 角の大小にもち込む 解答 (1) △ABCは∠C=90°の直角三角形 であるから ZB<ZC ① △ABP においてBC ∠APB=∠CAP + ∠ C > <C 1 ①② から ∠B << APB」 よって AP <AB (2) 点P, B は l に関して反対側にあるから,線分 PB は ℓ と交わる。その交点を Q とすると, Qは線分PB 上にある (P,Bとは異なる)から <PAB> ∠QAB AQ=BQ また,Qは上にあるから ゆえに ① ② から すなわち よって ... (2) 練習 B P .…..... ∠QAB=∠QBA ∠QBA < ∠PAB ∠PBA <<PAB AP<BP 15* (FOTO)< A ∠C=90° であるから ∠A<90° ∠B <90° 検討 三角形の2辺の大小 上の例題 (2) の結果から, △ABCの2辺AB, ACの長さの大小は,辺 BCの垂直二等分線を利用して判定できることがわかる。つまり 辺BCの垂直二等分線l に関して,点AがBと同じ側にあれば, ABACである。 ∠APB は APCの外角。 C 80+0T+TA ∠B<<C<∠APBから ∠B <∠APB XOL (2) Ado OTAN A B P je M B C wie 200 18 (1) 鈍角三角形の3辺のうち, 鈍角に対する辺が最大であることを証明せよ。 BCの中点をMとする。 AB AC のとき, ∠BAM < ∠CAM p. 429 EX56 427 章 2 三角形の辺と角 12 る 2- $2 た 1数 こ 1 るを O ni 4234

回答募集中 回答数: 0
数学 高校生

80.1<指針> (辺の大小)⇔(角の大小)が成り立つことを利用するというのは、三角形は辺が大きいほどその辺の対角の大きい、という性質を利用するということですか?

D D A' C C FORE> 音にのばす Fac 形の対辺の長さは ASUA 2辺の長さの和は の長さより大きい STRERT 性質 <e, c<f b+c<d+e+f の値 基本例題80 三角形の辺と角の大小 O MO (1) ∠C=90°の直角三角形ABCの辺BC上に,頂点と異なる点Pをとると, AP <ABであることを証明せよ。 If Yo XO 814. to (2)線分 AB の垂直二等分線ℓに関して A と同じ側にあって,直線 AB 上にな 1点をPとすると, AP<BP であることを証明せよ。 p.425 基本事項 ② 指針 02 (1) AP <AB の代わりに∠B<∠APB を示す。 2つの三角形△ABP と APC に分け て考える。 自分のする (角の大小)が成り立つことを利用する。 三角形において,(辺の大小) (21)と同様に,∠PBA <<PAB を示すことを目指す。 l と線分PBとの交点をQとす ると, △QABは二等辺三角形であることに注目。 635 THORA CHART 三角形の辺の長さの比較 角の大小にもち込む 解答 (1) △ABC は ∠C=90°の直角三角形 であるから ZB<ZCSC. ① △ABP においてABCの内心 ∠APB=∠CAP + <C> <C ∠B<∠APB B <QAB=∠QBA ∠QBA < ∠PAB ∠PBA < < PAB AP<BP 180- 2 A 1 ① ② から よって AP <AB (2)点P,Bはℓに関して反対側にあるから,線分 は l と交わる。その交点を Qとすると, Q は線分 PB 上にある (P, B とは異なる)から 017 ∠PAB > ∠QAB ・・・・・・ AQ=BQ また,Q は ℓ上にあるから ゆえに ①②から すなわち よって ∠C=90° であるから ∠A<90°, ∠B<90° PC 60+04+TA ∠APBは△APCの外角。 <<B<<C<∠APBから <B <∠APB 検討 三角形の2辺の大小 上の例題 (2) の結果から, △ABCの2辺AB, ACの長さの大小は,辺 BC の垂直二等分線を利用して判定できることがわかる。 つまり 辺BCの垂直二等分線lに関して,点AがBと同じ側にあれば, AB < AC である。 (2) ALBA je Yo S XO A P B Q M store. P B 18 争に対する辺が最大であることを証明せよ。 427 3章 12 三角形の辺と角 5 or ev る 5 n

回答募集中 回答数: 0
数学 高校生

下から9行目で、3いこーるだいなりにしていますが、イコールつけると、AとBが同じ角度になって、鈍角が2つになるんじゃないんですか?

240 CTT S 基本 例題 154 三角形の成立条件, 鈍角三角形となるための条件 AB=2, BC=x, CA=3である△ABC がある。 (1) xのとりうる値の範囲を求めよ。 (2) △ABC が鈍角三角形であるとき, xの値の範囲を求めよ。 P.230 基本事項 3, [4] tokie 指針 (1) 三角形の成立条件 [6-c| <a<b+c を利用する。 ここでは、3-21<x<3+2の形で使うと計算が簡単になる。 (2) 純角三角形において, 最大の角以外の角はすべて鋭角であるから、最大の角が なる場合を考えればよい (三角形の辺と角の大小関係より, 最大の辺を考えることに る)。そこで、最大辺の長さが3かxかで場合分けをする。 例えば CA(=3) が最大辺とすると, ∠Bが鈍角⇔ cos B <0⇔ 21 90%4+ -<0⇒ c²+a²-b² <0 ER 「となり! bc+α² が導かれる。 これにb= 3,c=2, α=x を代入して,xの2次不等 2703 が得られる。 c²+a²-b² 2ca 解答 (1) 条件から 3-2<x<3+2 よって 1<x<5 TV: TV-Onie: 8 (2) [1] 1<x<3のとき, 最大辺の長さは3であるから, その 対角が90°より大きいとき鈍角三角形になる。 ゆえに 32>22+x2 すなわち x-5<0 よって ゆえに (x+√5)(x-√√5) <0_____* -√5<x<√5 ELS 1<x<3との共通範囲は 1<x<√5 [2] 3≦x<5のとき, 最大辺の長さはxであるから, その対 角が 90°より大きいとき鈍角三角形になる。 レー ゆえに x2>22+32 ( すなわち x²-13>0 よって ゆえに 3≦x<5との共通範囲は [1], [2] を合わせて (x+√13)(x-√13) > 0 x<-√13, √13<x-1-(5)-1 √13 <x<5 1<x<√5,√13 <x<5 [参考] 鋭角三角形である条件を求める際にも,最大の角に着目し, 最大の角が鋭角となる場合を考えればよい。 練習 154 (1) xのとりうる値の範囲を求めよ。 AB=x, BC=x-3,CA=x+3である△ABCがある。 (2) △ABCが鋭角三角形であるとき、xの値の範囲 |x-3|<2<x+3または |2x | <3 <2+xを解いて x の値の範囲を求めても いが、面倒。 [1] LIRICA *C B>90°⇔ AC2>AB²+BC [2] B 2 A 3 B A>90° BC²>AB²+AC 191 547 A 重要 例題 15 x>1 とする。 三 き、この三角形の 指針 三角形の最大 このとき x 例えば,x= x2+x+1が なお, x2-1 三角形の成 EBI mok+1 CHART 文 解答 x>1 のとき よって, 3辺の長 存在するための 整理すると したがって, x また, 長さがx 辺に対する角が この角を0とす (x² COS A= ⅡI 2 || 41 したがって 三角 ③155 (1)

回答募集中 回答数: 0
数学 高校生

なぜ正接を求めるのに1+tan^2B…を使うのですか?

258 00000 基本例 157 三角形の辺と角の大小 △ABCにおいて, sin A: sin B: sinC=√7: :1が成り立つとき (1) △ABCの内角のうち、最も大きい角の大きさを求めよ。 (2) △ABCの内角のうち、2番目に大きい角の正接を求めよ。 指針 解答 なぜ 使うの 練習 ② 157 (1) 正弦定理 (1) 正弦定理より、a: bic=sin A sin B: sin C が成り立つ。 これと与えられた等式から最大辺がどれかわかる。 三角形の辺と角の大小関係より、最大辺の対角が最大角 であるから 3辺の比に注目し, 余弦定理を利用。 a<b>A<B a=bA=B a>b⇒A>B B (三角形の2辺の大小関係は、その対角の大小関係に一致する。) (2) まず、2番目に大きい角のcos を求め, 関係式1+tan20= COS A= a b C sin A sin B sin C cos B= a:b:c=sinA: sin B: sin C これと与えられた等式から よって, ある正の数んを用いて a=√7k, b=√3k,c=k SI-81+³81 と表される。ゆえに, α が最大の辺であるから, A が最 大の角である。 +008-as a 余弦定理により (√3k)²+k²-(√7 k)² 2-√3 k.k よって, 最大の角の大きさは A=150° (2) (1) から2番目に大きい角はBである。 余弦定理により k2+(√7k)²2-(√3k)² 2.k. √7 k 等式1+tan² B= 1 cos2 B から 1= tan B= 3 V 25 により a:b:c=√7:13:1 = tan'B -(2√7)²-1 28 cos² B 5 25 A> 90° より B90° であるから tan B>0 したがって (*)014 3 5 -3k² 2√3k² 5k2 2√7k² |-- -1= 3 2 5p0 2√7 549 25 /p.248 基本事項 4 重要 159 30- 5 8 7 sin A sin B sin C が成り立つとき 1 cos²0 ® を利用。 6 a sin A sin B a/a: b=sinA: sinB b ・から sin B sin C b:c=sin B: sinC 合わせると (*) となる。 kを正の数として C から △ABCにおいて (1) AABCの内角のうち、2番目に大きい角の大きさを求めよ。 (2) ABC の内角のうち,最も小さい角の正接を求めよ。 のとりうるの | ABCが魅角三冊 (1) 三角形の成立 b S=k とおくと a=√7k, b=√3k. c=k a>b>cからA>B>C よって A が最大の角で ある。 √3 k B √7 k 三角比の相互関係。 (p.238 例題 144 参照。) (1) の結果を利用。 △ABC は鈍角三角形。 C [類 愛知工大] 851 VD #=38 7=81 (0) 角三角形に 角となる場合を 例えば CA (3) ∠Bが となり、 等式が得られる。 軽よって (①) 三角形の成立条件 く (2) どの辺が最大辺に [] I<x<3のとき の対角が90°より ゆえに すなわち よって ゆえに <x<3との共通料 2xくらのとき X² (x₁

回答募集中 回答数: 0
数学 高校生

a:b:c=sinA:sinB:sinC ↓ sinA:sinB:sinC=√7:√3:1 になぜなるのでしょうか? よろしかったら理論立てて教えて欲しいです。🙇‍♂️

基本例題 153 三角形の辺と角の大小 sin A sin B √7 √3 △ABCにおいて, =sin C が成り立つとき (1) △ABC の内角のうち,最も大きい角の大きさを求めよ。 (2) △ABCの内角のうち, 2番目に大きい角の正接を求めよ。 p.230 基本事項 ④ 指針 (1) 三角形の辺と角の大小関係に注目。 a<b⇔A<B a=b⇔A=Ba>b ⇔A> B 三角形の2辺の大小関係は,その対角の大小関係に一致する。) よって, 最大角の代わりに最大辺がどれかを調べる。 正弦定理より, a:b:c=sinA : sin B: sin C が成り立つこと CHAを利用し、3辺の比に注目。 (2) まず、2番目に大きい角のcos を求め, 関係式 1+tan²0= 5JX150 解答 (1) 正弦定理 a b sin A sin B 1+tan² B= sin C a:b:c=sin A:sin B:sin C sin A:sin B:sinC=√7:/√3:1 m 条件から よって a:b:c=√7:√3:1 ゆえに,a=√7k,b=√3k,c=h(k>0) とおける。 よって,αが最大の辺であるから,∠Aが最大の角である。 余弦定理により COS A= 練習 ②153 cos B= (√3 k)²+k² −(√7 k) ² 2-√√3 k.k したがって, 最大の角の大きさは A=150° (2) (1)から2番目に大きい角は ∠B 余弦定理により k2+(√7k)²2-(√3k)2 2.k. √7 k 1 cos2 B から であるから tan2B= A> 90° より B <90° であるから したがって tan B= cos' B-1-(27)-1-28-1-23 25 tan B>0 3 V 25 5 -3k² √3 2√3 k² 2 ......... 5k² 5 2√7k² 2√7 25 cos²0 か q B r s B △ABCにおいて, 5 8 7 sin A sin B sin C (1) △ABCの内角のうち、2番目に大きい角の大きさを求めよ。 (2) △ABCの内角のうち,最も小さい角の正接を求めよ。 が成り立つとき ①00 を利用。 重要 155 A a b C 77 = $3= 1 =* (R>0) -=k √3 とおくと a=√√7k, b= √3k, c=k a>b>cからA>B>C よって、 ∠Aが最大の角で ある。 √7 k ⇔p:r=gs A 小 √3 k (1) の結果を利用。 △ABC は鈍角三角形。 594 C RET [類 愛知工大] 239 4章 468 正弦定理と余弦定理 18

回答募集中 回答数: 0
1/3