学年

質問の種類

物理 大学生・専門学校生・社会人

(1)〜(4)の解き方って合っていますでしょうか。また、(5)の問題が分からなかったので教えていただきたいです🙇左が問題、右が解いたものです。

問4 軽いバネの片端を壁に固定し、 他端に質量mの物体をつけて粗い床面に置いた、水平パネ振り子を考 える。 バネが自然長の時の物体の位置を=0とし、 バネが伸びる向きに軸正をとる。 物体は床面から速度 と逆向きの抵抗力-bu を受ける (6は比例定数)。時刻 t = 0 に、 原点にある物体に正の初速度 vo を与える と、バネ定数にがん=だったため、このパネ振り子は臨界減衰振動をした。 この時、任意の時刻 t におけ る物体の位置(t) は右下のグラフのようになり、y=を用いて以下の式で表せる。 (t)=votent 以下の間に、mo, のうち、 必要な記号を用いて答えよ。 (自然対数の底eは数字なので、当然使用可。) (1) 最初に物体の速さが0となる時刻 to を求めよ。 (2) 時刻 to の物体の位置 z (to) を求めよ。 (3) 時刻 to までにバネが物体にする仕事 W を求めよ。 (4) 時刻 to までに床からの抵抗力が物体にする仕事 Wa を、 (3) の結果を用いて求めよ。 (5) 【チャレンジ問題】 前問で求めたW を、 以下の積分を実行することで導け。 rx(to) = to) (-kv)dz = Wa= ・to sto (-kv)dr = √ (-bv) vdt = √ (-bv²) dt 位置 時刻

回答募集中 回答数: 0
数学 高校生

最後の一行の蛍光ペンのところの文ってどうして必要なのですか?

重要 例題166 定積分と和の極限 (3) ・対数の利用 00000 [防衛医大 基本144) 限値 lim 1 (4n)! nn V (3n)! を求めよ。 指針 まず, 1/(4n)! を簡単にすることを考える。 α 1 (An)! nV (3n)! nV (3n)! とすると 3n (371)...・・2・1 an- 1 An(An-1).(3n+2)(3n+1)+3n(3n-1)........2.1 n =1/12 ((3n+1)(3n+2) (3n+n-1)(3n+n)) n An=3n+nと考える。 更に、両辺の対数をとると, 積の形を 和の形で表すことができるから, lim (7)=S,f(x)dx を利用して,極限値を求める。 n→∞ ni なお, 関数10gxはx>0で連続であるから よって, liman=α が存在するなら 811 例題 重要 例 16 長さ2の線分A 等分する。 (1) AAPBO よ。 (2) 極限値 α = る。 指針 lim(logx) = loga log と lim xα lim (logan)=log (liman 交換可能 818 (1) 線分 よっ (2)求 SSC an= 解答 n (4n)! とすると √ (3n)! 1 (3n+1) (3n+2) (3n+n)} n(3+)(3+)(3+) (1) 線ケ 解答 よっ ゆえ an= = n //{(3+/-) (3+)(3+7) 1.(d(3+1/2)(3+/-)(3+n)} =(3+/-)(+) (+) よって, 両辺の自然対数をとると ◄ (n")=n 110g(3+1/2)+10g(3+/2/2)+10g(3+1/72)}=171210g(3+4) -log(3+ lim(logan)=log(3+x)dx=(3+x)'10g(3+x)dx logan=- n ゆえに 11-00 = 1 (3+x)log(3+x )]-f(3+x)3+x 44 =4log4-3log3-1=10gge =log- 関数10gxはx>0で連続であるから した (2)c -dx 部分積分法。 256 27e 256 liman= lim (loga.) = log(lima. 8+U 27e 練習曲 ③ 167 練習 数列 an = ④ 166 n² 7/4 P2n (n=1,2,3, ・・・・・・) の極限値 lima” を求めよ。 12-00 [ 東京理科大)

未解決 回答数: 1
化学 大学生・専門学校生・社会人

はじめまして。 問2.3がわからなくてとても困っています。 もしよろしければ教えていただきたいです。 よろしくお願いします。

<問題> 1) 安息香酸、クロロフェノール、アントラニル酸メチルのpK』 をPubChem で調査せよ。 2) 二つの化学種が平衡状態にあるとき、 Gibbs 自由エネルギー差はAG =-RT In K で表 される。 ここでKは平衡定数 (ある化学種に占めるもう一方に化学種の割合) である。 メチルシクロヘキサンのメチル基がアキシアルを占める立体配座とエクアトリアルを 占める立体配座の標準状態における存在比を求めよ。 計算実験で得られた立体配座異 性体のエネルギーの差を Gibbs 自由エネルギー差の近似値として用いてよい。 なお、In (エルエヌ) は自然対数を指しInx = yならばey=x (左辺はexp (y) と書くこともある) である。 気体定数は R ≒ 8.31 JK-1 mol-1 を用いよ (Bruice 有機化学、 5.7 参照)。 3) メタン、エチレン、アセチレンの分子軌道を量子化学計算の一種であるハートリー・ フォック法により計算せよ。 Engine: Gamess, Calculation: Molecular Orbitals, Theory: RHF, Basis Set: Minimal:STO-3G を指定せよ。 各化合物はそれぞれいくつの 分子軌道をもつか。 上記のうち、 多重結合を有する化合物について、 全ての軌道を 図示し占有数(Occupancy) を示せ。 また、 それぞれの化合物の結合角(∠HCH やく HCC) はおよそ何度か。 これまでに学習した軌道の混成状態についての知識と比較せ よ。

回答募集中 回答数: 0
数学 高校生

例題68.2 (赤で書いているところは無視してください) 2枚目のように、自然対数をとった時yを|y|にしていたら 「x>0よりy>0」の記述はなくても大丈夫ですか?

基本 例題 68 対数微分法 次の関数を微分せよ。 (x+2)4 (1)y= y= 3/ x²(x²+1) (2)y=xxx>0) 00000 [(2) 岡山理科大] 基本 67 利用。 x) x) るから ex) とら |指針 (1)右辺を指数の形で表し,y=(x+2) xf (x+1)として微分することもできるが 計算が大変。 このような複雑な積・商・累乗の形の関数の微分では, まず, 両辺 (の絶 対値) の自然対数をとってから微分するとよい。 →積は和,商は差, 乗は倍となり, 微分の計算がらくになる。 (2)(x)=x-1 や (α*)' =α*10ga を思い出して, y'=xxxl=x* または y=x*10gxとするのは誤り! (1) と同様に,まず両辺の自然対数をとる。 CHART 累乗の積と商で表された関数の微分 両辺の対数をとって微分する (1) 両辺の絶対値の自然対数をとって log|y|=//{410g|x+2|-210g|x|-log(x+1)} 解答 両辺をxで微分して1=13142 2 2x y x x2+1 よって y'= 1/3 y (x+2) = 1.4x(x2+1)-2(x+2)(x+1)-2x2(x+2) (x+2)x(x+1) 1-2(4x-x+2) 3 3(x+2)x(x+1) Vx2(x2+1) 2(4x2-x+2) 3/ x+2 3x(x+1) Vx(x+1) (2)x>0であるから, y>0である。 両辺の自然対数をとって 両辺をxで微分して logy=xlogx y = 1.10gx+x.- = y y=(logx+1)y=logx+1)x* よって ||y|= x+2/ |x(x²+1) として両辺の自然対数をと (対数の真数は正)。 なお, 常に x 2 +1> 0 対数の性質 loga MN=loga M+logaN M loga N -=log.M-loga N logaM=kloga M (a>0, a+1, M>0, N>0) 両辺>0を確認。 <logy をxで微分すると x (logy)'=y'

未解決 回答数: 1
1/15