学年

質問の種類

資格 大学生・専門学校生・社会人

日商簿記3級のサンプル問題です。 すべての問題の正答を教えていただきたいです。 よろしくお願い致します。

第1問 下記の各取引について仕訳しなさい。 ただし、 勘定科目は、 設問ごとに最も適当と思われるものを選び、 答案 用紙の()の中に記号で解答すること。 なお、 消費税は指示された問題のみ考慮すること。 1. かねて借方計上されていた現金過不足 ¥5,000 の原因を調査したところ、 同額の手数料の受取りが二重記 帳されていることが判明した。 ア. 雑益 エ. 現金過不足 イ. 受取手数料 オ. 支払手数料 ウ. 現金 カ 雑損 2. 郵便局で、 郵便切手 ¥400 を現金で購入するとともに、 店舗の固定資産税 ¥32,000 を現金で納付した。 なお、 郵便切手はすぐに使用した。 ア. 受取手形 エ. 支払手数料 イ. 現金 才. 支払家賃 ウ. 通信費 カ租税公課 3. 商品 ¥180,000 を仕入れ、 代金のうち ¥30,000 は注文時に支払った手付金と相殺し、 残額は掛けとし た。 なお、当社負担の引取運賃 ¥2,000 は現金で支払った。 ア. 仕入 エ. 前払金 イ. 買掛金 才、現金 ウ. 前受金 カ. 仮払金 4. 広告宣伝費 ¥53,000 を普通預金口座から支払った。 その際に、 振込手数料 ¥500 がかかり、同口座から 差し引かれた。 ア. 当座預金 イ. 旅費交通費 広告宣伝費 オ. 支払手数料 ウ. 普通預金 カ. 受取手数料 5. 飛騨株式会社に対する買掛金 ¥290,000 について、 電子記録債務の発生記録の請求を行った。 ア. 電子記録債権 エ. 受取手形 イ. 支払手形 オ. 買掛金 ウ. 売掛金 カ 電子記録債務 6. 銀行から借り入れていた借入金 ¥800,000 の返済日になったため、元利合計を普通預金口座から返済した。 なお、 借入れの年利率は1.8%、 借入期間は当期中の9か月間であり、 利息は月割計算する。 ア. 支払利息 エ.借入金 イ. 支払手数料 オ貸付金 ウ. 受取利息 カ. 普通預金 7. 従業員の給料 ¥600,000 の支給に際して、 所得税の源泉徴収額 ¥32,000 住民税の源泉徴収額 ¥43,000 および従業員負担の社会保険料 ¥52,000 を差し引いた残額を普通預金口座から支払った。 ア. 法定福利費 所得税預り金 イ. 普通預金 オ. 社会保険料預り金 ウ. 住民税預り金 力. 給料 8.建物の賃借契約を解約し、 契約時に支払っていた保証金 (敷金) ¥360,000 について、 修繕費 ¥122,000 を差し引かれた残額が当座預金口座に振り込まれた。 ア. 差入保証金 エ. 支払手数料 イ. 修繕費 才. 支払家賃 ウ. 当座預金 カ. 受取手数料

回答募集中 回答数: 0
数学 高校生

(2)を解き、答えもあっていましたが、私の答案の書き方で直した方がいいところを教えてください。

4 サイコロ型・ (1) 2個のさいころを同時に投げるとき, (i) 目の数の差が2である確率はいくらか. (ii) 目の数の積が12である確率はいくらか. (2)3個のさいころを同時に投げるとき,あるさいころの目の数が残りの2つのさいころの目の 数の和に等しい確率はいくらか. ( 椙山女学園大) 1 2 3 4 5 6 O O O さいころは区別する 目はさいころ1つにつき6個あるから, 2個投げ た場合,目の出方は36(=62) 通りあってこれらは同様に確からしいさい ころ2個であれば右のような表を書いて条件を満たすところに印をつける (図は目の数の和が6の場合で確率は5/36) という解法も実戦的と言える. さて,右表で「1と2の目が出る」 は2か所にあるが,これは 「区別できる さいころに1と2の目を割り当てるとき, 割り当て方は2通りある」 という 5 O ことである. ゾロ目は割り当て方が1通りなので表でも1か所ずつである. 6 12345 10 まず目の組合せを調べる さいころが3個以上のときは,表を書いて解くのは大変である. 上で述 べたように,まず目の組合せを調べ, 次にどの目をどのさいころに割り当てるかを考える. ③ (a,b,c)の関係性の国立 (サイコロ) 解答 ①サイコロ ②出に目一列に並べる→口 サイプわりわてるふり (1) 2個のさいころを区別し, A, B とすると, 目の出方は62=36通りあり, 表を使って解いてもよい。 これらは同様に確からしい. (i) 目の組合せは {3, 1}, {4, 2}, {5, 3}, {6, 4}の4通りで,どちらがAでAが3, Bが1とAが1. Bが あるかで各2通り。 よって出方は4×2=8通り. 求める確率は 8 2 36 9 など2つの目が異なるので割り 当て方は2通りずつ(Ⅱ)も同 様 (17 (i) 目の組合せは {2,6}, {3,4} だから, (i) と同様に目の出方は 4 1 2×2=4通り. よって確率は = 36 9 (2) さいころを区別すると, 目の出方は 63=216通りある. ←同様に確からしい. 3つの目を a, b, c として, a=b+c を満たす(a,b,c) [ただしbsc] を調 ここは3つの目の組合せ. べると, (2, 1, 1), (3, 1, 2), (4, 1, 3), (4, 2, 2), wwwwwwww wwwwwww (5, 1, 4), (5, 2, 3), (6, 1, 5), (6, 2, 4), (6, 3, 3) wwwwww ←αが小さい順, αが同じならが 小さい順. 目の割り当て方は,が各3通り,それ以外は各3!=6通りあるから,216 ~ は,異なる目をどのさいこ 通りのうち、条件を満たすような目の出方は ろに割り当てるかで3通り. 3×3+6×6=45 (通り) ある. 全ては等確率では出 45 5 ません!! 従って、求める確率は 216 24 4 演習題 (解答は p.47) 1から6までの目をもつ立方体のサイコロを3回投げる。 そして 1,2,3回目に出た目 をそれぞれ a, b, c とする. (1) a, b, c を3辺の長さとする正三角形が作れる確率を求めよ. (2)/α,b,cを3辺の長さとする二等辺三角形が作れる確率を求めよ。 (3) a, b, c を3辺の長さとする三角形が作れる確率を求めよ. (滋賀医大) まず a b c の組合せを 列挙する. 何かが小さい 順など, 系統的に数えよ う. (1) (2) 以外は3辺 の長さが相異なる. 37

回答募集中 回答数: 0
数学 高校生

n=k+1のときを考えると〜 以降の計算の仕方がわかりません。 教えていただきたいです🙇‍♀️

納 基本 例題 55 等式の証明 が自然数のとき,数学的帰納法を用いて次の等式を証明せよ。 1・1!+2・2! + ・・・...+n.n!=(n+1)!-1 指針 ① 数学的帰納法による証明は, 前ページの例のように次の手順で示す。 [1] n=1のときを証明。 [2]n=kのときに成り立つという仮定のもとで, +1のときも成り立つことを証明。 [1] [2] から, すべての自然数nで成り立つ。 出発点 ←まとめ 00 49 [類 早稲田大〕 p.498 基本事項 1 [2]においては,n=kのとき①が成り立つと仮定した等式を使って,①のn=k+1 のときの左辺 1・1!+2・2!+....+k•k!+(k+1)(k+1)! が,右辺 {(k+1)+1}!-Iに 等しくなることを示す。 また,結論を忘れずに書くこと。 [1] n=1のとき 注意 検討 (左辺) = 1.1!=1, (右辺) = (1+1)!-1=1 よって,①は成り立つ。が成り立つと [2] n=kのとき, ①が成り立つと仮定すると 1.1!+2.2!+ ·+k•k!=(k+1)!-1 n=k+1のときを考えると,② から 1·1!+2•2!+…………….+k•k!+(k+1)·(k+1)! =(k+1)!-1+(k+1) ・(k+1)! ={1+(k+1)}(k+1)!-1 =(k+2)・(k+1)!-1=(k+2)!-1 ={(k+1)+1}!-1 よって, n=k+1のときにも①は成り立つ。 は数学的帰納法 の決まり文句。 答案ではき ちんと書くようにしよう。 kは自然数(k≧1)。 ①でn=kとおいたもの。 n=k+1のときの① の 左辺。 n=k+1のときの① の 右辺。 [1][2]から、すべての自然数nについて①は成り立つ。結論を書くこと。 数学的帰納法では, 仕組み (流れ)をしっかりつかむようにしよう (指針の [1], [2])。 なお, [1]でn=1の証明が終わったと考えて, [2] でn=kの仮定を k≧2 としてしまって は誤りである。 注意するようにしよう。

回答募集中 回答数: 0
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
1/15