学年

質問の種類

数学 高校生

画像3枚目のように比をつかって解いたのですが、 PR/AB=10/21になってしまいました。 この考え方は間違っていますか?教えてください。

分散、標準偏差 入ります。 ア, イ, m」 と標準偏差のは 450 イウ,...で示 1.1/2(1-2)=125=5 大きいから、 Z5 従う。 また, X=60 のとき X-50とすると、 は近似的に標準正規分 V(X),標準偏差 (X)は E(X)=np V(X)=np (1-p 確率変数Xが二項分布 B(n, 従うとき,Xの期待値 E(X) OP= 20A+OB 1+2 OA+OB 内分点の位置ベクトル 次に,点は線分AQ の中点であるから, AQ2AH であり 線分ABをmin に内分する点を Pとすると OQ = OA + AQ =OA+2AH OP= "OA+mOB m+n ... ① 60-50-2 5 B 50,212) に従う。よって、どの期待値mと標準偏差のは X-np √np (1-p) 正しいとすると、1回の試合でAが勝つ確率は であるから, Y 従うとき,Z= 確率変数Xが二項分布 B(n, (X)=√mp(1-p) 二項分布の正規分布による近 点は直線 OP 上の点であるから, kを実数として 0 OH = k OP とすると が大きいとき, 確率変数は と表される。このとき AH-OH-OA - kOP - OA = k(²/OA+/+OB)-OA B mPn 点Pが直線AB上にある H B ⇔AP = AB 的に標準正規分布 N(0, 1)に従う = (k-1)OA+KOB --2 を満たす実数k が存在する。 ベクトルの差 50.12=25 ここで,点Qは直線OP に関して, 点Aと対称な点であるから, OPAQ であり AB = OB-OA OPAH (③) Y-25 50は大きいから, Z2= 5 とすると, Zは近似的に標準正規分 √2 したがって 0, 1)に従う。 また, Y=30 のとき 30-25 Z₂ = 2=12 5 =1.4142≒1,414 .. ② OP.AH=0 (OA+/OB){(1/2-10A+/kOB}=0 (20A+OB)・{(2k-3)OA+kOB}=0 (4k-6) OA 2+(4k-3) OA・OB+k OB=0 (4k-6)×12+(4k-3)x1+k(2)=0 8k-15 - =0 P(-1.96 ZS 1.96) = 0.95 解法の糸口 り,有意水準 5% の棄却域は Z≦-1.96 または 1.6 Z ..③ ここで 2009年から2018年の全100 試合の中で実際にAが勝ったのは 24+3660 (試合) 正規分布表を用いて棄却域を 求め, (1) (2)それぞれ求めた Z1,Z の値が棄却域に入るか どうかを調べる。 15 k = 16 これを②に代入して AH=438×168-10A+1/3×1/8OB ①の値は③に入るから, 仮説Hは棄却される。 また, 2019年から2023年の全50試合の中で実際にAが勝ったのは30試 ②の値は③に入らないから, 仮説Hは棄却されない。 以上により, 有意水準 5% の検定において, (1) では仮説Hは棄却されて (2) では仮説Hは棄却されない (①)。よって,(1)ではAとBの間に力の差があ ると判断でき, 2)ではAとBの間に力の差があるとは判断できない (①) 標本から得られた確率変数の値が 棄却域に入れば仮説を棄却し、 棄 域に入らなければ仮説を棄却しない 数学Ⅱ 数学 B 数学C 第6問| ベクトル 解法 内積の定義により OA・OB = |OA||OB|cos ∠AOB 1 =1x√2 x 1 2√2 2 また、点Pは辺AB を 1:2に内分する点で あるから 0 A 'B ベクトルの内積 探究 ①でない2つのベクトル なす角を90° の 180° とする と ab=a||6|cose =-3-OA+16 OB さらに, ① に代入して OQ=OA+2(-20A+16OB) =OA+OB 次に,点Rは直線OQ 上の点であるから, 実数として OR = 1OQ と表される。このとき OR = (OA+OB) -1108 +108 ベクトルの垂直条件 ①でない2つのベクトルに ついて abab=0 ・B R 学8年 解法の糸口 OQ をもとに OR をOA と OB を用いて表すことを考える さらに、 PR を AB を用いて す。

解決済み 回答数: 1
数学 高校生

数学の確率分布の問題の質問です。 (1)でX1の分散をもとめる問題が答えと違っていました。立式が間違っているのか、計算間違いなのか教えてほしいです🙏🏻 E(X^2)-{E(X)}^2 じゃなくて、(X-m)^2×P(X)を使ってるのが間違いなのでしょうか??

【問2】 1回投げると, 確率p(0<<1) で表, 確率 1-pで裏が出るコインがある. このコインを投 げたとき,動点P は, 表が出れば +1, 裏が出れば-1だけ, 数直線上を移動することとする.は じめに, Pは数直線の原点 0にあり, n回コインを投げた後のPの座標を Xn とする. 必要に応じ て,正規分布表を用いても良い. (1) X1 の平均と分散を, それぞれp を用いて表せ. また, Xn の平均と分散を, それぞれんと p を用いて表せ. (2) コインを100回投げたところ X100 =28であった.このとき, pに対する信頼度 95% の信 頼区間を求めよ. (1) X」 についての確率分布は次のようになる。 X1 -1 1 計 確率 1-p p 1 であるから, X100 28 のとき 2k-100=28 k = 64 である. これより標本比率 Rは よって、求める X」 の平均E(X」) は R= 64 100 =0.64 E(Xi)=(-1)・(1-p) +1 p=2p-1 であり,分散 VOX」)は である. これより R(1-R) V(X)=(-1)・(1-p) +12.p-(2-1) 2 =4p(1-p) R-1.96 × 100 =0.64-1.96 × 0.641-0.64) 100 である. = 0.54592 ん回目の試行で表が出れば 1, 裏が出れば-1 の値をと る確率変数を Yk (k=1, 2,...,n)とし であり Xn=Y1+Y2+... + Yn R(1-R) R + 1.96 × と定める. Yk (k=1, 2,...,n) は互いに独立である から 100 0.64(1-0.64) = 0.64 +1.96 × E(Y)= E(X)=2p−1 100 V(Yk)=V(Xi)=4p(1-p) = 0.73408 であるから, 求める信頼区間は である. E(Xn)=E(Y1 +2 +... + Yn) 0.5459 p≤0.7341 =E(Y1) +E(Y2) +... + E(Vn) =nE(Y1) である. =m(2p-1) であり V(X)=V(Yi) + V(Y2)+…+ V(Yn) = nV (Y1) =4np(1-p) である. (2) kk=0, 1, 2, … 100 を満たす整数とする. コイ ンを100回投げて表がk回出るときのPの座標 X100 は X100=k・1+ (100-k) (−1) =2k-100

解決済み 回答数: 1
数学 高校生

数検準一級です。緑のマーカーのところがわかりません。 なぜ八分の七になるのでしょうか? 教えていただきたいです。

問題 7 解答 -21 [解説 =tとすると 23r+1+3・7_2-3+1+3.7~ 5・23-7-1 5・2-34-7-1-1 2. 787-8 +3 7をかける 分母と分子に 準1級2次 第4回 実用数学技能検定 P.86 ~P.91 問題 1 解答 問題 2 (B)=(1.1) (=5+3/31. (+3√315-30 -5-3/3) [解答 (1)g= 1 4√√6 -5-3√31 (-5-334-5+34) b=- √6 3 (2) a= b=112 5- 解説 [解説 のときであり <1より a+β=p, aβ=gとおくと, 条件は p+2q=4 …① 2. 2x+1+37* (2) p2-q=3...② +3 8 -= lim- と表される。 ① + 2x②より lim 5・23-7-1100 5 2p2+p-10-0 (1) さいころを1回振るとき、 2以下の目が出る 確率は1/28-1/2である。 4 Xは二項分布B 32.4 に従うので、Xの平均 と分散は これを解いて 3 1 -- 5 E(X)=32.1=8.V(X)=32.1.0/ -= 6 4 p=2. 2 7 =-21 指数関数の極限 a>1のとき lima=∞, lima=0~ 200 0<a<1のとき limα = 0. lim a=00 00 8 MOGAN 5 13 ②よりp=2のときg=1,p=-1のとき== p=2.g=1のとき,解と係数の関係よりα,B は次の2次方程式の2解である。 t2-2t+1=0 これを解くとt=1 (重解)より, α=β=1 p=-- 5 13 1/12g=1/2のときα.Bは次の2次方程式 の2解である。 4 513 t+= t+==0 2' -5±3√3i これを解くとt= より 4 -5±3√3i -53√3i α=- B= (複号同順) 4 4 以上より求める組は (-5+3/31-5-3/3). (α,β) = (1,1) 4 (-5-3√31-5+3√31) 4 Y=aX+bの平均と分散は E(Y) = aE(X) + b = 8a + b. V(Y) = α-V(X)=6² より 8a+b=0.6m²=1 これを解いてa= 4v6 b= √√6 3 二項分布の平均, 分散、標準偏差 確率変数X が二項分布B (n. p)に従うとき、 q=1-pとすると E(X)=np. V(X)=npq.(X)=√npq 1次式の平均、 分散、標準偏差 Xを確率変数とし. α, bを定数とするとき E(aX+b)=aF(X) +6 V(aX+b)=α-V(X) (ax+b)=lalo(x) (2)(1)よりm=E(X)=8. a=√V(X)=√6である。 Y=aX+bの平均と標準偏差は E(Y)=8a+b. (Y) = lala(x)=√6a 第4回 3

解決済み 回答数: 1
1/76