学年

質問の種類

数学 高校生

画像2,3枚目の〜❓マークの3点が理解できませんでした。 なぜそうなるのかを教えてほしいです。

第2問 必答問題) (配点 15 k,nを自然数とし,kについての条件Aを次のように定める。 条件A: k" が (n+1)桁の数となる。 (2)以下の問題では,必要ならば次の値を用いてもよい。 log102=0.3010.log103= 0.4771, log 107=0.8451, logio 11=1.0414 花子さんと太郎さんは, 続いて次の課題2 について話している。 0 課題2 条件Aを満たすんの個数が1となるようなnの最小値を求めよ。 よ (1)太郎さんと花子さんは、次の課題1 について話している。 課題 1 条件Aを満たすkの個数が、xの値によってどのように変わるかを考察 せよ。 太郎:いきなり”で考えることは難しそうだね。 n=1の場合から具体的 に考えてみよう。 花子: n=1のときは,条件Aは 「kが2桁の数となる。」つまり 10≦k < 10°と表せるね。 このようなkは全部でアイ個あるよ。 99-9=90 n=2のときはどうなるかな。 花子: どのようなnに対してもk=10は条件Aを必ず満たすことはわ かっているよ。 太郎: そうか。 条件Aを満たすの個数が1となるときは,k=10のみと わかるね。 花子 (10-1)", (10+1) (n+1) 桁になるかどうかに注目してみよう。 (10-1)" は (10+1)" は blog (10-1) == Welogioco - (ogrol) =n-logol 条件Aを満たすkの個数が1となるためのnの必要十分条件は, キが (n+2) 桁以上になることである。 J: 0125 0 あることがわかるよ。 花子:n=3のときも同じように計算していくとnを大きくしていく と、条件を満たすの個数は減っていく気がするね。 n をどんど ん大きくしていくと, 条件Aを満たすんの個数が0となるのか な? 56.78.9 太郎: n=2のときは,条件Aは 「kが3桁の数となる。」 だから, 10°k < 10°を満たす自然数を数えればいいね。 10=3.16... であることを用いると,この不等式を満たすには全部で ウェ 個 10≦k10010 31-9=22 10k<31.6... 以上より, 条件Aを満たすんの個数が1となるとき,n クケであり, 求めるnの最小値はクケであることがわかる。 の解答群 ⑩どのようなnに対しても (n+1) 桁にならない実 は ①nの値によって, (n+1) 桁になるときとならないときのどちらもある 70-4300 キ の解答群 太郎:10” は (n+1) 桁だから,k=10のときは,条件Aを必ず満たすよ。 ⑩ (10-1)" ① 10+1)" だから,条件Aを満たすんの個数が0とはならないね。 (3) 条件Aを満たすの個数が2となるようなnは全部で コサ個ある。 (数学Ⅱ,数学B,数学C第2問は次ページに続く。) -9- - 8 コロ

回答募集中 回答数: 0
化学 高校生

緩衝液のphの求め方教えて下さい。お願いします🙇‍♂️

◆問題 343 発 緩衝液 0.10Lの酢酸水溶液10.0mLに0.10mol/Lの水酸化ナトリウム水溶液 5.0mL を 加えて、緩衝液をつくった。 この溶液のpHを小数第2位まで求めよ。 ただし,酢酸の 電離定数を Ka=2.7×10-5mol/L,log102.7=0.43 とする。 LOW 第章 物質の変化と平衡 考え方 反 解答 ( 緩衝液中でも,酢酸の電離平衡 が成り立つ。混合水溶液中の酢 酸分子と酢酸イオンの濃度を求 め, 電離平衡の量的関係を調べ ればよい。このとき,酢酸イオ ンのモル濃度は,中和で生じた ものと酢酸の電離で生じたもの との合計になる。これらの濃度 を次式へ代入して水素イオン濃 度を求め, pH を算出する。 残った CH3COOH のモル濃度は, 0.10× 10.0 1000 -mol-0.10× 5.0 1000 mol 0.10 x mol (15.0/1000) L また,生じた CH3COONa のモル濃度は, 5.0m 1000 = 0.0333mol/L (S) (g) m0.0 -=0.0333mol/L (15.0/1000) L 混合溶液中の [H+] を x[mol/L] とすると, 平衡状態CH3COOH 1 H+ + CH3COO- はじめ 0.0333 [H+][CH3COO-] 平衡時 0.0333-x 0 x 0.0333+x 0.0333 [mol/L] [mol/L] Ka= ① 340 [CH3COOH] [CH3COOH] [H+]= ② [CH3COO-] xの値は小さいので, 0.0333-x= 0.0333,0.0333+x= 0.0333 とみなすと, ②式から [H+] = Ka となるため, pH=-logio [H+]=-logio (2.7×10-5)=4.57 X 発展例題28 溶解度積 問題 346 347

回答募集中 回答数: 0
生物 高校生

生物基礎の問題で、なぜ「分泌顆粒数が少なくなった=ホルモンや酵素が分泌された」という考え方になるのでしょうか?どのように読み取るのでしょうか?それともこの内容は、暗記ですか?

81 すい臓のホルモン 5分 実験 正常な マウス No. 1 と No.2 から, 一晩絶食後に血 液を採取した。 絶食後, マウス No. 1にはグ ルコース 50mg入り生理的食塩水 0.5mL を 血管内に直接投与し, マウス No. 2には流動 食 (糖質50mgを含む) 0.5mLを胃内に直接 投与した。 投与1時間後 2 時間後に血液を採 図1 高 血糖値 ホルモン値 酵素値 低 絶食 1時間後 2時間後 Y細胞 細胞 取し血糖値, すい臓由来のホルモン値, すい臓由来の酵素値を測定した(図1)。 血糖値を上げるホルモンとしては, すい臓の ア などが知図2 られている。 図1のホルモン値は,イの推移を見たもので ある。 すい臓由来のデンプン分解酵素にはアミラーゼがあるが, 血中で高値にならないのは、 分泌された酵素はすい管を経て, 胃 と小腸をつなぐ十二指腸に排出されるからである。 図2にすい臓の顕微鏡像の模式図を示すが,X 細胞は, 分泌物 の合成に関与する細胞小器官が発達している。 Y細胞とZ細胞は, 血管にホルモンを分泌しており, 小型の分泌顆粒に分泌物が含ま X 細胞 。 No.1 • No. 2 れている。 (18 熊本大改) 問 ア イ ① グルカゴン に入る語を,次の①~④のうちからそれぞれ一つずつ選べ。 ② 糖質コルチコイド ③ アドレナリン 問2 マウス No.1 と No. 2 の投与後のすい臓 図3 X細胞 ④ インスリン Y 細胞 細胞 多 のX, Y, Z 細胞内での, 細胞当たりの分泌 顆粒数の推移を観察すると, 図3のように なった。 X, Y, Z細胞は,ア・[ イ (相対数) 少 アミラーゼのうちどの産生細胞か。 最も適当 な組合せを、次の①~⑥のうちから一つ選 絶食 1時間後 2時間後 べ。 ① ③ ⑤ アXYZ イ アミラーゼ Y Z ② X X Z Y ア XYZ ZZY イ アミラーゼ Y X X 。 No.1 • No.2 » 4. 例題 6

回答募集中 回答数: 0
英語 高校生

カッコで囲んだとこの英文の1つ目のandからの訳がどうして2枚目のようになるのか教えてください。 2枚目のどんな疑問が重要か〜の次のとこからです

ample practices varied across time and place. The truth is that we about what preliterate societies knew or believed. But they left behind *. evidence of their attention to the movements of the Sun and the phases of the Moon. And we can be sure that whatever questions they asked of the heavens were very different from those that motivate space exploration today. (A) rotic othe In reality, the difference between ancient and modern knowledge systems is more qualitative than quantitative; it is not about how much is known, but about what questions are important and about the acceptable ways of asking and answering those questions. And while we may not easily be able to slip between our modern worldview and those of others, we can nonetheless attempt to do so by asking not what ancient people knew about the world, but what their questions were when they looked at it. If we do this in the case of Mars, examining a few of the earliest known examples from around the world, we can see how sky knowledge was considered important to the functioning of the state whether it was *astrological knowledge in the service of good governance, or knowledge of bloodlines and relationships with the gods and other sky entities, which was used (B) - verdd

回答募集中 回答数: 0
数学 高校生

(2)の問題が分かりません。教えて下さい。

10 極値をもつ条件 関数A(x)=xについて,次の問いに答えよ. (1) A(x)の増減を調べ, 極値を求めよ. (2) 関数B() がB' (x) =A (z) を満たすとする. a を実数とし,x>0において, 関数 f(x)=B(z) -axが極値をもつとき,aのとりうる値の範囲を求めよ. 問題文のf(x)が極値をもつとき 100k (大阪工大・推薦/改題) f'(x) =0であることのみに注目してはいけない. f'(x) = 0 の解の前後でf'(x) が符号変化しなければ極値をもたない. 極値をもたない条件は,f'(x) が符号変化をおこさない (つねに0以上,またはつねに0以下)こと である. 文字定数を分離してとらえる場合 f'(x) の符号がg(x) -αの符号と同じになるとき,f'(x) の 符号は,曲線y=g(x) と直線y=αの上下関係で判断することができる.y=g(x) がy=aの上側にあ れば常にf'(x)>0, 下側にあれば常にf'(x) <0である。 このように,文字定数 αが分離できれば,定 曲線y=g(x) と, x軸に平行な直線y=αとの上下関係を調べればよいので,とらえやすい。 解答 > (1) A'(x)=2xe-x+xd(-e-x)=x(2-x) e-x A(x)の増減は, 右表のようになる. (x)) +(x)= (x)=Sit I 0 2 4 極大値は A (2)=- 極小値はA(0)=0 e² A'(x) - 0 + 0 = A(x) 7 > V H (2) f'(x)=B'(x)-a=A(z) -a x>0においてf(x) が極値をもつ条件は, である。 f'(x)がx>0で符号変化すること f'() (8-8)579- A(x)-a>o 0 + f(x)。 A(x)-9<0 =(x)7 Acx)>a A(x)<a 常にf'(x)>0⇔ y=A(x) がy=αの上側 常にf'(x) <0⇔y=A(x) がy=aの下側 ① である. (1) の過程, およびx>0のときA(x)>0 とから,y=A(x) のグラフは右図の太線のようにな る。 よって, ①により, 求める範囲は 4 e2 0(x)\il (1) 0<a<- のとき 直線と曲線は 0<x<2で交わり, f'(x)は負か ら正へと変化するので,ここで極 小値をとる. limA(x) =0(左 0<a<4 30 x110 2 x 下の注) であるからx>2でも必 ず交わり ここで極大値をとる. x2 x-00 et 注 lim -=0・・・・・・であるから, limA(x) =0が成り立つ. X11 ※を証明しておこう x = 2s とおくと, x2 ex e2s (es)2=4()² S 1+8% 6の前文を参照. () () は,x>0のとき, S so es であるから, lim -= 0 を示せばよい.e=t とおくと, S log t >1+x+- + -を導いて示 となり, 2 6 es t すこともできる. log x 818 IC 6(2) から lim -=0であるから lim=0である. S S-8 es

回答募集中 回答数: 0
1/319