学年

質問の種類

数学 高校生

135番なんですけど、回答の5行目までは分かるのですが、それ以降何言ってるかわかりません。あと回答の黒塗りされている場所の3行目以降も何言ってるかわかりません。

134 組立除法を用いて, 次の多項式Aを多項式Bで割った商と余りを求めよ。 複数になっているも (1) A=4x3+x2+6x-5, B=x-1 (2) A=3x3-x2+3, B= x +2 (3) A=2x-7x2+8x-8, B=2x-3 =+6 と30余る。 発展問題 135 多項式P(x) を (x-1)2で割ると余りが 4x-5, x+2で割ると余りが4 ヒント である。このとき, P(x) を (x-1)(x+2) で割ったときの余りを求めよ。 133 (1) x=√2-1 から, x+1=√2 の両辺を2乗して整理すると x2+2x-1=0 3 2 134 (3) x- で割り、割り算の等式を作る。 135 P(x) を (x-1)(x+2) で割ったときの余りを、更に (x-1)2で割る。 ゆえに 商x-2x+ 1, 余り -5 135 P(x)= を x+2 erとする Q₁(x される。 ①に代 *)=(x-1 =(x- ここで,P(x) るから PC 針■■ 等式P(x) = (x-1)(x+2)Q(x) +R (x) を作る。 (R(x)は ax2+bx+c と表される) (x-1)(x+2)Q(x) は (x-1)2で割り切れるか ら, R(x) を (x-1)2で割ったときの余りは, P(x) を (x-1)2で割ったときの余り (=4x-5) と一致する。 よって R(x)=ax2+bx+c =a(x-1)2+4x-5 あとは, αの値を求める。 P(x) を (x-1)(x+2) で割ったときの商を Q(x) とする。 このときの余りは、2次以下の多項式または0で あるから, ax2+bx+c (a, b, cは定数) とおけ る。 よってP(x)=(x-1)(x+2)Q(x)+ax²+bx+c 更に,P(x) を (x-1)で割ると余りが4x-5で あるから P(x)=(x-1)(x+2)Q(x)+α(x-1)+4x-5 ...... ① と表される。 P(x) を x+2で割ると余りが-4であるから P(-2) =-4 また, ① から P(-2)=9a-13 よって 9a-13=-4 ゆえに a=1 したがって, 求める余りは (x-1)2+4x-5 すなわち x2+2x-4 別解指針■■■ 等式P(x)=(x-1)2Q(x)+4x-5を作る。 Q(x)をx+2で割ったときの余りをとする と,Q」(x)=(x+2)Q2(x) + r と表される。 よって P(x)=(x-1)^{(x+2)Q2(x)+r+4x-5 =(x-1)(x+2)Q2(x)+(x-1)'r+4x-5 ゆえに、求める余りは(x-1)+4x5 あとは, rの値を求める。 また、②から よって gr これを② P(x)=(x- =(x- ゆえに、 求め 136 (1) 移項 左辺を因数分 よって ゆえに x x (2) 左辺を因数 (3 よって 3 ゆえに (3)左辺を因 よって ゆえに x 2 (4) 左辺を因 よって = ゆえに (5) 左辺を因 よって ゆえに 137 (1) P(= P よって, P を因数分解 P(x) =0 カ したがって (2) P(x)=1

回答募集中 回答数: 0
生物 高校生

(2)から(6)の考え方が解答を読んでも理解できないので教えていただきたいです。

発展問題 思考 計算 39.塩基の割合と DNA 次の文章を読み、下の各問いに答えよ。 ある細菌のDNAの分子量は2.97×10°で, アデニンの割合が31%である。この DNA から3000種類のタンパク質が合成される。ただし 1ヌクレオチド対の平均分子量を660 タンパク質中のアミノ酸の平均分子量を110とし、塩基配列のすべてがタンパク質のアミ ノ酸情報として使われると考える。また,ヌクレオチド対10個分のDNAの長さを3.4nm とする(1nm=10m)。また,ウイルスには,いろいろな核酸を遺伝物質としてもつもの がある。 問1 このDNAに含まれるグアニンとチミンの割合をそれぞれ記せ。 問2 この DNAは何個のヌクレオチド対からできているか。 問3. この細菌のDNAの全長はいくらになると考えられるか。 問4. この DNA からつくられるmRNA は、平均何個のヌクレオチドからできているか。 問5. 合成されたタンパク質の平均分子量はいくらか。 問6. 表は4種類のウイルスの核酸の塩 基組成 [モル%] を調べた結果である。 以下のア~エのような核酸をもつウイ ルスを, ①〜④からそれぞれ選べ。 ア. 2本鎖DNA ウイルス A ① 塩基組成 (モル%) C G 29.6 20.4 20.5 29.5 T U 0.0 ② 30.1 15.5 29.0 0.0 25.4 ウ. 2本鎖RNA イ. 1 本鎖DNA エ.1本鎖RNA ③ 24.4 18.5 24.0 33.1 0.0 27.9 22.0 22.1 0.0 28.0 01% 福岡歯科大改題) ●ヒント 問5.タンパク質1つ当たりのアミノ酸の数を求め,アミノ酸の平均分子量をかければよい。 問6.2本鎖と1本鎖の構造の違いから考える。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

A.Bの電流がcにつくる磁場はなぜ図のようになるのか教えてください。 右ねじの法則をどう使えば図のようになるんですか?

例題43 平行電流がおよぼしあう力 図のように, 3本の平行で十分に長い直線状の導線A, B, とBに紙面の表から裏の向きに, Cには逆向きに,いずれも cを, 一辺10cmの正三角形の頂点に, 紙面に垂直に置く。 A 12.0Aの電流を流す。 真空の透磁率を4×10-7 N/A とする。 (1) A,Bの電流が,Cの位置につくる磁場の向きと強さはい くらか。 (2)導線Cの長さ 0.50mの部分が受ける, 力の向きと大きさはいくらか。 指針 (1) ねじの法則を用いて, A, B の電流がCの位置につくる磁場を図示し, それ らのベクトル和を求める。 磁場の強さは. H=I/(2πr) の式を用いて計算する。 (2) フレミングの左手の法則から力の向きを, 磁場 261 発展問題 524 10cm B ので,Ha=H, である。 合成磁場は,図の右 向きとなる。 H, HB は, I 2.0 10 H=HB= = = - [A/m〕 2лr 2×0.10 π 合成磁場の強さHは, F=1JHI の式から力の大きさを求める。H=2×Hacos30°=2x10x1 08 π =5.50A/m 5.5A/m 10/3 = π 解説 F30° 電流の大きさは等しく, Cまでの距離も等しい (1)A,Bの電流がC の位置につくる磁場 A,Bは,右ねじの 法則から、図のように なる。HA,HB は,そ れぞれ AC, BC と垂直である。また,A,Bの -HB CQ H (2) フレミングの左手の法則から, 導線Cが受 ける力の向きは,AB と垂直であり,図の上 HA 向きとなる。 力の大きさFは, AQ &B 10√3 F=μolHl=(4×10-7) x2.0x -×0.50 π =6.92×10-N 6.9×10-N

回答募集中 回答数: 0
1/42