学年

質問の種類

数学 高校生

数学の確率分布の問題の質問です。 (1)でX1の分散をもとめる問題が答えと違っていました。立式が間違っているのか、計算間違いなのか教えてほしいです🙏🏻 E(X^2)-{E(X)}^2 じゃなくて、(X-m)^2×P(X)を使ってるのが間違いなのでしょうか??

【問2】 1回投げると, 確率p(0<<1) で表, 確率 1-pで裏が出るコインがある. このコインを投 げたとき,動点P は, 表が出れば +1, 裏が出れば-1だけ, 数直線上を移動することとする.は じめに, Pは数直線の原点 0にあり, n回コインを投げた後のPの座標を Xn とする. 必要に応じ て,正規分布表を用いても良い. (1) X1 の平均と分散を, それぞれp を用いて表せ. また, Xn の平均と分散を, それぞれんと p を用いて表せ. (2) コインを100回投げたところ X100 =28であった.このとき, pに対する信頼度 95% の信 頼区間を求めよ. (1) X」 についての確率分布は次のようになる。 X1 -1 1 計 確率 1-p p 1 であるから, X100 28 のとき 2k-100=28 k = 64 である. これより標本比率 Rは よって、求める X」 の平均E(X」) は R= 64 100 =0.64 E(Xi)=(-1)・(1-p) +1 p=2p-1 であり,分散 VOX」)は である. これより R(1-R) V(X)=(-1)・(1-p) +12.p-(2-1) 2 =4p(1-p) R-1.96 × 100 =0.64-1.96 × 0.641-0.64) 100 である. = 0.54592 ん回目の試行で表が出れば 1, 裏が出れば-1 の値をと る確率変数を Yk (k=1, 2,...,n)とし であり Xn=Y1+Y2+... + Yn R(1-R) R + 1.96 × と定める. Yk (k=1, 2,...,n) は互いに独立である から 100 0.64(1-0.64) = 0.64 +1.96 × E(Y)= E(X)=2p−1 100 V(Yk)=V(Xi)=4p(1-p) = 0.73408 であるから, 求める信頼区間は である. E(Xn)=E(Y1 +2 +... + Yn) 0.5459 p≤0.7341 =E(Y1) +E(Y2) +... + E(Vn) =nE(Y1) である. =m(2p-1) であり V(X)=V(Yi) + V(Y2)+…+ V(Yn) = nV (Y1) =4np(1-p) である. (2) kk=0, 1, 2, … 100 を満たす整数とする. コイ ンを100回投げて表がk回出るときのPの座標 X100 は X100=k・1+ (100-k) (−1) =2k-100

解決済み 回答数: 1
数学 高校生

N(p,n分のpq)とN(m,n分のσ二乗)って一緒なんですか?なんで違う式になってるかわからないです あとそもそも母比率と標本比率の関係がわかりません 教えてください

5 B 標本平均の分布と正規分布 ある工場で製造された製品について 不良品の割合を調べる場合のよ うに,母集団の各要素が,ある特性 A をもつかどうかを調査の対象と することがある。このとき,母集団全体の中で特性 A をもつ要素の割 合を,特性 A の 母比率という。これに対して,標本の中で特性 A を もつ要素の割合を,特性 A の標本比率という。 特性 A の母比率がpである十分大きな母集団から,大きさがnの標 本を無作為に抽出するとき 標本の中で特性 A をもつものの個数をT とすると,Tは二項分布B(n, p)に従う。 標本 則が成り立 標本平場 母平均 5 出する Nm 母集 分布 N 15 10 よって,g=1-p とすると, 86ページで学んだことから,nが大き いとき,Tは近似的に正規分布N(np, npg) に従う。 特性 A の標本比率を R とすると,R=- Tである。Rは標本平均 X 例題 10 n 9 と同様に確率変数で PAR E(R)=E(T)=1+np=p V(R)-112V(T)=1212.npa pq •npg= n ☆正規分布) したがって,標本比率 R は近似的に正規分布 Np, pq に従う。 n (6) 15 標本比率 R は,次のように考えると, 標本平均 X の特別な場合になる。 特性 A の母比率がである母集団において, 特性A をもつ要素を1, もたない要素を0 で表す変量 x を考えると,大きさんの標本の各要素 20 を表すxの値X1,X2, ......, Xn は, それぞれ1または 0 である。 特性 A の標本比率R は, これらのうち値が1であるものの割合であ るから h大きいとき X1+X2+......+Xn R= hXIII N (p, PHP), Ri n N(ゆ)に従う 20 4

回答募集中 回答数: 0
1/16