学年

質問の種類

数学 高校生

350の(2)意味がわからないので教えてください🙇‍♀️

=-2y2+6y 1)² + 12/21 目の xyt 9-2 9-233-2 2 y≤3 (2)x2-2x=t とおくと よって また t=x2-2x=(x-1)2-1 t≧-1 ... 1 y=t2+4t+5=(t+2)2+1 よって、 ① の範囲のに のようになる。 よって x =0で最小値1 [2] a=4のとき, グラフは図の実線部分のよう になる。 よって x= 0, 4で最小値1 18x) ついて, yはt=-1で最 [1] [2] 5 1 小値2をとる。 9 -2a2+8a+ 1 t=1のとき O を x2-2x=-1 2 1 3-2 3 よって x2-2x+1=0 左辺を因数分解して -2-10 t 1 10 2 a 4x 0 2 14 x I=I+0 [S] (x-1)20 亡き x = 3, ゆえに x=1 [3] 4 <a のとき, グラフは図の実線部分のよう になる。 y=1/2で最大1/2 9 きx=6, y=3のとき したがって, yはx=1で最小値2をとる。 最大値はない。 2' 351 関数の式を変形すると よって x =αで最小値 −2a2+8a +1 [3] y 162 9 x=6, y=0で最小値0 y=-2(x-2)2+9 (0≦x≦a) +2y2=6y2-24y+36 また x=0のとき y=1 x=αのとき y=-2a2+8a+1 +12 x=2のとき y=9 1 -2a2+8a +1 O 2 4 x x2+2y2 36 (1) [1] 0<a<2のとき, グラフは図の実線部分 のようになる。 り る。 18 12 Jei よって x=2で最大値 9 O 23 よって x=αで最大値 2a2+8a +1 [2] 2≤a のとき, グラフは図の実線部分のよう a-1-5 になる。 352 関数の式を変形すると大量 0 y=3(x-a)2-3a2 (0≦x≦2) また x=0のとき y=2 x=2のときy=14-12a x=a のとき y=-3a2+2 8+US+ ■で最大値36 で最小値12 xy (4)x+2y 発展 ✓ 350 次の関数に最大値、最小値があれば,それを求めよ。 (1) y=-2x+4x2+1 (2)y=(x²-2x)+4(x²-2x)+5 S=501=1

解決済み 回答数: 1
数学 高校生

マーカーのところで、S(t)を微分したとき、eってそのまま残らないんですか?

404 重要 例題 243 定積分で表された関数の最大・最小 (3) E めよ。 お 00000 (長岡技科大) 基本2027 20 指針▷ 絶対値 場合に分ける y 場合分けの境目はext=0の解で x=logt ここで,条件1≦tse より 0≦logt≦1であるから, 10gtは積 t-1 e-t 区間 0≦x≦1の内部にある。 よって, 積分区間 0≦x≦1を 0≦x≦logtとlogt≦x≦1に分割して定積分 Solex-t\dx を 解答 計算する。 Logt 19 ② x=logt xbxnia+xbx ex-t=0 とすると 1≦t≦e であるから 0≤logt≤1 ゆえに 0≦x≦logt のとき logt≤x≤10 よって 1800円 ゆえに logt (logt は単調増加。 -A ex-t=-(ex-t), AA (A0) lex-t|=ex-t S(t)=S„** {−(e*−t)}dx+S'«(ex-1)dx logt logt 1(x) ==== [e*-tx] + [ex-tx]" ? + + + + 0 logt 0 Jlogt =-2(ehost -flogt)+1+e-tnie == =-2t+2tlogt+1+e-t -1)=2tlogt-3tte-1 S'(t)=2logt+2t•· -3=2logt-1 1 t 1 S'(t) = 0 とすると logt= 2 よって t=ež=√e t 51 Je ... e - 0 + A (A≥0) 積分変数はxであるから、 tは定数として扱う。 -[F(x)+8x =-2F(c)+F(a)+F(8) Melost=t xb/x800- 微分法を利用して最大 最小値を求める。 S(t) e-2 最小 0 ive et e-2√e+1 表は右のようになる。 ここで e-2<1, ◄e=2.718... S√e) =2√elog√e-3√e +e+1=e-2√e +1 log√e= したがって, S(t) は t=eのとき最大値 1, 1≦t≦e における S(t)の増減 S'(t) S(t) e-2 極小 1 t=√e のとき最小値 e-2√e +1 をとる。

解決済み 回答数: 1
数学 高校生

解答では、それぞれの長さを変数でおいてから、相似比で1変数に直していますが、別解として、θを設定して1変数関数として求めることは出来ますか?できれば答えまで示して欲しいです

ENGRENS. 4K 89 重要 例題 104 最大・最小の応用問題 (2) 題材は空間の図形 ①①①① 半径1の球に,側面と底面で外接する直円錐を考える。この直円錐の体積が最 基本 103 小となるとき, 底面の半径と高さの比を求めよ。 指針立体の問題は,断面で考える。→ここでは,直円錐の頂点と底面の円の中心を通る平 面で切った 断面図 をかく。 問題解決の手順は前ページ同様 ① 変数と変域を決める。 2 量(ここでは体積) を で決めた 変数で表す。 3 体積が最小となる場合を調べる (導関数を利用)。 であるが,この問題では体積を直ちに1つの文字で表すことは難しい。 そこで,わか らないものはとにかく文字を使って表し, 条件から文字を減らしていく方針で進める。 50-0 直円錐の高さをx, 底面の半径を r, 解答 体積をVとすると, x2 であり A TATR)S (高さ)> (球の半径) x2 から。 7= ...... ① x 3 D 球の中心を0として,直円錐をその 頂点と底面の円の中心を通る平面で 切ったとき,切り口の三角形ABC, および球と △ABC との接点 D, E を 右の図のように定める。 (Onie-nia +(1+8203)8 200/ △ABE∽△AOD (*) であるから AE: AD=BE:OD B --E C (*) △ABE と △AODで ∠AEB= ∠ADO=90° ∠BAE = ∠OAD (共通) 26 すなわち x:√(x-1)2-12=r:1 (1+0 2000 2001 0200S) (1+0 200) 対応する辺の比は等しい。 AD は, 三平方の定理 を利用して求める。 x よって r= 2) √x²-2x ②①に代入して V=π 2 x π x •x= 3 dV π2x (x-2) -x2・1 x-2 πx(x-4) • 3(x-2)2 よって dx = 17 3 (x-2)2 dv = 0 とすると, x>2であるから x=4 dx x>2のときVの増減表は右のようになり、 体積 V はx=4のとき最小となる。 このとき, ②から r=√2 ゆえに, 求める底面の半径と高さの比は r:x=√2:4 Vをx (1変数) の式に 直す。 () u'v-uv v.2 x 2 4 dv 4 20 dx V 極小 +

解決済み 回答数: 1
1/1000