学年

質問の種類

数学 高校生

なぜ第1象限で接したとき最大なのですか?

x, 2 領域と分数式の最大・最小 yが2つの不等式 x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, |最大値と最小値, およびそのときの x, yの値を求めよ。 y-2 y-2 x+1 の ・基本 122 連立不等式の表す領域Aを図示し, 指針 x+1 =kとおいたグラフが領域 Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy-2=k(x+1) を通り,傾きがんの直線を表すから、傾きんのとりうる値の範囲を考えればよい。 (1,2) CHART 分数式 y-b 最大 最小 y-b x-a =kとおき, 直線として扱う x-a x-2y+1=0 ①, x2-6x+2y+3= 0 2 YA 解答とする。連立方程式①,②を解くと P (x,y)=(1,1) (4,212) 5 ② -=kとおくと ゆえに、連立不等式x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 Aは図の斜線部分である。 ただし, 境界線を含む。 y-2 3 (3 2 2 y-2=k(x+1) (3) RY x+1 すなわち y=kx+k+2 ③は,点P(-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき この値は最大となる。 ② ③からyを消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると D 4 =(k-3)2-1 (2k+7)=k-8k+2 直線 ③が放物線 ②に接するための条件はD=0であるか ら, k2-8k+2=0 より k=4±√14 第1象限で接するときのkの値は k=4-√14 このとき、接点の座標は (√14-1, 4√14-12) k(x+1)-(y-2 = 0, x=-1, y=2のときん についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 k=4+√14 のときは, 第3象限で接する接線と なる。 次に,図から直線 ③が点 (1, 1) を通るとき,kの値は最 小となる。このとき k= 1-2 = -1/ Ak= y-2 ソニに代入。 1+1 よって 2 x=√14-1, y=4√14-12 のとき最大値 4-√14; x = 1, y=1のとき最小値- x+1 0r2+4x-y+2≦0 を満たすとき の最大値 x-2 201 3章 1 不等式の表す領域

回答募集中 回答数: 0
数学 高校生

数Iの二次不等式の質問です なぜこの方程式がじつ数回をもつ条件を利用して解くのか理解できないです

重要 例題 1222 変数関数の最大・最小 ( 4 ) 000 小値、およ 実数x, y が x2+y2=2を満たすとき,2x+yのとりうる値の最大値と最小値を 求めよ。また,そのときのx, yの値を求めよ。 思い出 203 [類 南山大 ] 基本 101 指針 条件式は文字を減らす方針でいきたいが,条件式x2+y2=2から文 字を減らしても, 2x+yはxyについての1次式であるからうま くいかない。 見方をか そこで, 2x+y=t とおき, tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 →2x+y=t を y=t-2x と変形し,x2+y2=2に代入してyを消 去すると x2+ (t-2x)=2となり,xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 CHART 最大・最小 =t とおいて,実数解をもつ条件利用 13 3章 15 2次不等式 2x+y=t とおくと y=t-2x ① 二もに2枚 これをx2+y2=2に代入すると 解答 式は 整理すると x2+(t-2x)=2 5x2-4tx+t2-2=0 k, yth g-s+x)= ONCE + Sy このxについての2次方程式② が実数解をもつための 条件は、②の判別式をDとすると D≧0 参考実数a, b, x, y に ついて,次の不等式が成り 立つ(コーシー・シュワル ツの不等式)。 (ax+by)²=(a+b²) (x² + y²) [等号成立は ay=bx] この不等式に α=2,6=1 。 ここで D=(-2t)2-5(2-2)=-(f2-10) (ハース)を代入することで解くこと できる。 D≧0 から t2-10≤0 >> これを解いて -√10 ≤t≤√√10 す。 -4t 2t t=±√10 のとき, D=0で,②は重解 x=- を のとき,②は t=±√10 2.5 5 5x2+4√10x+8=0 2√10 もつ。=±√10 のとき x=± 5 よって (√5x+2√2) 20 ①から y=± √10 (複号同順) 5 2/10 よって x= y= 5 √10 のとき最大値 10 5 2/10 √√10 x=- y=- のとき最小値10 ①からy=± (複号同順) ゆえに x=± =± 2√2 2/10 √5 5 √10 5 5 5 としてもよい。

未解決 回答数: 0
1/116