学年

質問の種類

数学 中学生

数学 一次関数の利用の問題です 一次関数が苦手でほとんど理解出来てません □9 (1)~(3) □5 (3) の解き方を教えてほしいです また、解く時のコツなどあればお願いします

3 ② y=-2x+2 (2) 次の方程式のグラフをかきなさい。 x+y=-4 Y = -K - 4 9 -x+2y-12=0 27 = 20 +12 Y = = = K ₁6 (2) とyの関係を表すグラフをかきなさい。 (3) Bさんは, Aさんが走りはじめてから2分後 に分速 175mで走りはじめました。 B さんの エネルギー消費量が A さんのエネルギー消費 量と等しくなるのは, Aさんが走りはじめてか ら何分後か求めなさい。 (1) (3) キロカ ロリー [1次関数の利用) AさんとBさんは, 運動場でランニン グをしました。 Aさんは走りはじめてか ら最初の5分間は分速150mで走り 次の7分間は分速100mで走りました。 右の表は, ランニングでの1分あたりのエネルギー消費量を表しています。 Aさんが走りはじめてから分後のエネルギー消費量を”キロカロリーとするとき 次の(1)~(3)に答えなさい。 (1) Aさんが走りはじめてから3分後までのエネルギー消費量を求めなさい。 分後 -5 (2) 速さ (m/分) 1分あたりの エネルギー消費量 (キロカロリー) y |140| 120 |100 80 60 40 20 5 O O 2 4 5 220 <(1) 2 点, その他 3点×2> 100 150 175 5 6 8 12 14 S I 8 10 12 X

回答募集中 回答数: 0
数学 高校生

この問題の(2)(3)(4)を教えて頂きたいです🙇‍♀️ 全然わからなくて困ってます、、、。

CONNECT 10 aは定数とする。 関数 [解答] y=x2-2x+1 を変形すると を求めよ。 [1] y=(x-1)2 よって、この放物線の軸は直線x=1, 頂点は点 (1,0)である。 また x=a のときy=a2-2a+1, x=a+1 のときy=α2 x=a+1 で最小値 α2 [1] a+ 1 <1 すなわちa<0のとき [2] alla +1 すなわち 0≦a≦1のとき x=1で最小値0 x=αで最小値α²-2a+1 [3] 1 <a のとき [3] ↑ [2] O a+1 a+1 (a+1)2-40-4+3+PPnt① aiza+1-4a-4+3 (153 aは定数とする。 関数y=x2-4x+3 (a≦x≦a+1) について,次の問いに答えよ。 (1)* 最小値を求めよ。 J= (2-2) ²1 x= ・a^2 ①atic2 atlのとき最小値azza 1.2≦atl a<l atl +1≦a assat 1 1≦a≦2のとき (sasz x=2で最小値-1 332<a+l icaのとき ka つにaで最小値a²-4a+3 y=(x-23-1 頂(2,-1) x=aのときy=a^²-4a+3 x=a+1のときy=a²2a 0a+1<√ ² aconc 最小値azza 。 vaのとき x=aで最小値az4a+300+A 2 1 ○ocacy のとき メントで最小値 31 (2)* 最大値を求めよ。 TOKYO d aciのとき、x=aで a ①acl 最大値の24a+3 ②l≦a≦2 ARASSAG 1≦a≦2のとき、x=pl ③ icalcaのとき、x=a+1で a [+x8²xS=²(x-1)+²x+10 a ² za 31+x8- Sv=H_ @10<H 81+x8-18=H= >x>0 a+b 0<x-bC+0<x£* 8S1+(S-SE=81+x8-01-18) [S=1 #1² Joh mo S8 .8 TV8=EST\\?S=x* J (3) (1) で求めた最小値をm とすると, はαの関数である。この関数のグラフをかけ。 OLL.- (4) (2)で求めた最大値をMとすると, M はαの関数である。 この関数のグラフをかけ。 ¹+ y² = x² このときy=1-2-5-1

回答募集中 回答数: 0
1/3