学年

質問の種類

数学 高校生

数B 統計的な推測 仮説検定 (短期攻略共通テスト数学2BC) 解答の5,6行目で 2・(1-0.4772)って0.456にならなくないですか? また、z=2.0と出た時点で、z≧1.96(有意水準5%)の棄却域に入る、よって判断できる、という考え方ではだめですか?

954分 8点 62. 仮説検定 181 あるサイコロを720回投げたところ, 5の目が140回出た。 このサイコロ はるの目の出る確率が1/ -ではない, と判断してよいか検定してみよう。 このサイコロを投げて, 5の目が出る確率をp として,次の仮説を立てる。 帰無仮説 H: 対立仮説 H: イ 助が正しいとする。 サイコロを720回投げて, 5の目が出る回数をX と すると,確率変数Xの平均はウエオ,標準偏差はカキであるから, X-ウエオ 「カキ とおくと, Zは近似的に標準正規分布 N(0, 1)に従う。 X=140 のとき, Zの値はx=クケであるから, 有意水準 5% 有意水準 1% で検定するとサ で検定すると コ イの解答群 ① 6 2 p + 1/15 3 p + 1/14 コ サ の解答群 6 5の目が出る確率は1/3であると判断できる 0.5の目が出る確率は1/8 ではないと判断できる 05の目が出る確率が1/3 でないとは判断できない 解答 無仮説 Hop= = (①), 対立仮説 H: pキ (③) 両側検定 。 6 変数Xは二項分布 B (720,118) に従うので,平均は Hip>/ とすると 6 片側検定になる。 =120, 標準偏差は720. 15 66 =10 である。 1z= X-120 とおく。 10 X=140 のとき, z=2.0であり P(Z≦-2.0, 2.0≦Z)=2·(1-0.4772) =0.456 であるから,有意水準 5% で検定すると,このサイコロ 55の目が出る確率はではないと判断できる(①)。 6 また,有意水準 1% で検定すると,このサイコロは,5 の目が出る確率が 確率がでないとは判断できない(②)。 6 -P(0≤Z≤2.0) =0.4772 H を棄却する。 ◆H を棄却できない。

解決済み 回答数: 1
数学 高校生

数学2B 軌跡の問題です。 (3)で “ここで⑤よりX=-2+2/1+a^2” とありますが、なぜそうなるのでしょうか?💦

例題 114 軌跡 〔8〕・・・ 線分の中点の軌跡 (2)・・・(札 円 x2 +y2 = 1 ・・・ ① と直線 αax-y+2a=0 ・・・ ② について (2) αが (1) で求めた範囲で動くとき, その2交点を結ぶ線分の中点の座 (1)円 ①と直線 ② が異なる2点で交わるとき, αの値の範囲を求めよ。 をαを用いて表せ。 (3)(2)の中点の軌跡を求めよ。 (1) ①と直線 ② が異なる2点で交わる ① ② を連立した2次方程式 (*) の判別式DがD> 0 ①の中心と直線②の距離) (①の半径) どちらで考えるか? (2)素直に考えると・・・ X = 中点(X, aX-Y- したがっ ゆえに, (3)5 X=- よって ↑計算が繁雑 ⑥ の y 2次方程式(*)から2交点の座標を実際に求めて考える。 求めるものの言い換え 思考プロセス 2次方程式(*)の2解をα, βとする 解と係数の関係 中点のx座標 a+β 2 《ReAction 線分の中点の軌跡は,解と係数の関係を利用せよ 解 (1) ①,②より,yを消去して整理すると ⑦を Y2 = 0 よっ a a+β. ここ 2 ④よ 例題113) 軌跡 4 D>0より 3 ・④ であるから √3 例題 (1 + α²)x2 + 4ax + 4a² -1 = 0 ... ③ 94 ① ② は異なる2点で交わるから, ③の判別式をDと すると D > 0 D == (2a²)² - (1+ a²)(4a²-1) = −3a²+1 -3a²+1>0-6 円 ①の中心と直線 ② の 距離を d,円 ① の半径を r として,d<r から求 めることもできるが、(2) で交点の座標を考えるか ら,③を考える。 Play Back 8 参照 √3 Point (1) ② <a< 例題 130 (2) αが(1)で求めた範囲を動くと き,円 ①と直線②の2交点の x座標は,xの2次方程式 ③の 2つの実数解である。 3 3 1 <0 + (3 (2 (X, Y) 1 より ** ④ これらをα, β とすると,解と 係数の関係より (1) a<± としないよう -2-1a O B a+B= 4a² 1+ a2 とすると よって,円 ①と直線 ② の2交点の中点の座標を (X, Y) la+B= b a に注意する。 ■2次方程式 lax+bx+c=0の2つ の解をα,Bとすると 練習 11 198 laβ=

解決済み 回答数: 1
1/5