学年

質問の種類

数学 高校生

223. このような記述でも問題ないですよね? またこの問題での接線を求めるときのプロセス、 ①接線の座標を仮定して接戦の方程式を立てる ②接線が通る点の座標を代入 ③微分を用いて求める という順番で進むのは一般的ですか??

演習 例題223 3本の接線が引けるための条件 (1) 曲線C:y=x+3x2+x と点 A(1, a) がある。 Aを通ってCに3本の接線が引 けるとき,定数aの値の範囲を求めよ。 [類 北海道教育大] 1970 基本 218 である。 る。 指針▷ 3次関数のグラフでは、接点が異なると接線が異なる(下の 検討 参照) から, 曲線CA (1,α) を通る3本の接線が引ける 針の① の 曲線C上の点 (t +3t'+t) における接線が A を通るようなtの値が3つある そこで, 曲線C上の点(t, t3+3t+t) における接線の方程式を求め,これが点 (1,α) を 通ることから, f(t)=a の形の等式を導く。 ・・・・・・ CHART 3次曲線 接点 [接線] 別なら 接線 [接点] も別 解答 y=3x2+6x+1であるから, 曲線C上の点(t, 3+ 312+t)に おける接線の方程式はy-(t+3t+t)=(32+6t+1)(x-t すなわち y=(3t2+6t+1)x−2t−3t2 ばよい。 この接線が点 (1,α) を通るとすると -23+6t+1=α ... ① f(t)=-2t+6t+1とすると f'(t)=-6t2+6=-6(t+1)(t-1) f'(t)=0 とするとt=±1 f(t) の増減表は次のようになる。 -1 1 0 |極大 5 .... 0 + 極小 -3 7 - 5 t f'(t) -3 f(t) 3次関数のグラフでは,接点が異なると接線が異なるから, もの3次方程式 ① が異なる3個の実数解をもつとき, 点Aか ら曲線Cに3本の接線が引ける。 したがって、曲線 y=f(t) と直線y=α が異なる3点で交わる 条件を求めて -3<a<5 -1/0 +トー の解 1 y=a t - Ku y=f(t) 定数 αを分離。 f(-1)=2-6+1 = -3, f(1)=-2+6+1=5 ①の実数解は曲線 y=f(t) と直線y=α との 共有点の座標。 検討 3次関数のグラフにおける, 接点と接線の関係 3次関数y=g(x)のグラフに直線y=mx+nがx=α, β (αキβ)で接すると仮定すると g(x)-(mx+n)=k(x-a)²(x-B)² (k=0) ←接点 重解 の形の等式が成り立つはずである。 ところが, この左辺は3次式, 右辺は4次式であり矛盾して いる。 よって,3次関数のグラフでは, 接点が異なると接線も異なる。 the これに対して, 例えば4次関数のグラフでは、 異なる2点で接する直線がありうる (前ページの 61 3 関連発展問題 38

回答募集中 回答数: 0
数学 高校生

接戦の方程式ってなぜこのようになるんですか?💦

O 基本例題 248 放物線と | 放物線C:y=x2-4x+3上の点P(0, 3), Q (6, 15) における接線をそれぞれ 基本246,247 |ℓ, m とする。 この2つの接線と放物線で囲まれた図形の面積Sを求めよ。 指針 まず, 2接線l m の方程式と, l, m の交点のx座標を求め, グラフをかく。 この交点のx座標を境に接線の方程式が変わるから, 被積分関数も変わる ・被積分関数は, (x-α)” の形で表される。 よって, 定積分の計算では, S(x-a)'dx=(x-a)² -+C (C は積分定数) を利用すると,かなりらくになる。 3 y=x2-4x+3 から y'=2x-4 解答の方程式は,y-3=(2・0-4)(x-0)からy=-4x+3 m の方程式は, y-15=(2・6-4)(x-6) から y=8x-33 lとmの交点のx座標は, -4x+3=8x-33 を解くと 12x-36=0 PAA ゆえに x=3 よって, 求める面積Sは S={(x-4x+3)-(-4x+3)}dx +{(x-4x+3)-(8x-33)}dx = S²x²dx+S₁ (x-6)²³dx - [ ²³1 + [(x = 60² 1 3 =9+9=18 uhl (x = S 530 -S{(2x+3)(x-4x+3)}dx 24+S(x2-6x)dx 9 4 =54+ x(x-6)dx -54-11 (60)=54-36-18 P |15 13 のが 3 m 14800 n^e 参考lとmの交点をRとし, 2点P, Q を通る直線をnとす る。また、Cとnで囲まれた部分の面積をSとすると,求 める面積Sは S=APQR-S₁ R(3, -9), n:y=2x+3であるから 1 S= ((15-3)+(3-(-9)}]* *1 22 6 x 23(²x-(x8-0017+x5 【曲線 y=f(x) 上の点 (a, f(a)) における接 線の方程式は y-f(a)=f'(a)(x-a) 曲線と接線の上下関係 0≦x≦3では x2-4x+3≧-4x+3 3≦x≦6では x2-4x+3≧8x-33 f(x-a) dr [ (x=a)² + C 3 C- YA |15 3 S₁ 0 -T 169-2 (*) APQR =APQT+APRT 底辺PTは共通。 177 2つの (2) 指針 解答

回答募集中 回答数: 0
数学 高校生

この接戦の方程式⑴番の問題でなぜy-1=4(x-0)になるのかわかりません。解説お願いします。

基礎例題166 ~発展例題179 282 接点や傾きが与えられた場合 接線の方程式(1) 基礎例 関数 y= 接線の方を 基礎例題169 (2) 傾きが-4である接線 CHAE Q G (1) グラフ上の点 (0, 1) における接線 CHART QGUIDE) 曲線 y=f(x) 上の点(a, f(a))における接線 傾き f'(a), 方程式 y-f(a)=f"(a)(x-a) (2)は次の要領で求める。 1 y=f(x) とし, 導関数f'(x) を求める。 2 接点のx座標をaとし, f'(a)=(傾き) となる aの値を求める。 3 接点の座標を求め,公式を利用して接線の方程式を求める。 日解答田 (ローx) 日解き f(x)=-2x°+4x+1 とすると (1) f(0)=4 であるから, 求める接線の f(x)=-4x+4 F(x)= 」と同意 一前ページの[例と 接線の傾きf(0) をむ 12) 『関数」 におけ 方程式は ソー1=4(x-0) すなわち 公式に当てはめる。 y=4x+1 (2) 接点のx座標をaとし, f'(a)=D-4 とすると 1 9 -4a+4=-4 すな 4 ーf(a)=-4a+4 ーf(2)=-2-2"+4-2+1 ゆえに a=2 また f(2)=1 1 0 2 x この よって, 求める接線の方程式は ソー1=-4(x-2) y=f(x) =1 すなわち 一接点の座標は(2, 1) 整理 y=-4x+9 Lecture 導関数の図形的意味 ゆ し 関数 y=f(x) の x=a における微分係数 f'(a) は, ソ=f(x)のグラフ上の点(a, f(a)) における接線の傾きを表す。 したがって,導関数f'(x) は, もとの関数 y=f(x) のグラ フ上の各点における接線の傾きを与える関数ともいえる。 例] f(x)=-2.x°+4x+1 のとき 例 傾きが -4+4 y=f(x)- 1 上の例題の関数。 f(x)=-4x+4 ソ=f(x) のグラフ上の, x座標がtである点における接線の 傾きは -4t+4 である(右の図参照)。 10112 微分

回答募集中 回答数: 0
1/2