学年

質問の種類

数学 高校生

演習β第36回 1(3) (3)が全く分からないので詳しく教えてください🙇‍♀️

1 [2000 香川大] 3次関数f(x)=x-3ax+α²-4について,次の問いに答えよ。 (1) この関数の極値を調べよ. (2) 方程式f(x)=0が異なる3つの実数解をもつようなαの値の範囲を求めよ. (3) (2) のとき, 3つの解は2と2aの間にあることを示せ . 解答の値によって場合分け!! (1) f'(x)=3x-34²=3(x+a)(x-a) [1] a>0のとき x=-αで極大値f(-α)=203+α-a, x=αで極小値f(α)=-2a+α-a をとる。 [2] α=0のとき極値なし. [3] a <0のとき で極大値f(a) =-2a3+a²-a, x=-αで極小値f(-a)=2a+α-a をとる. (2) 関数f(x) が正の極大値と負の極小値をもつとき, y=f(x)のグラフはx軸と3点 で交わるから、方程式f(x) = 0 は異なる3つの実数解をもつ。 (1) から, 求める条件は A a≠0かつf(-a)f(a)<0 ここで (1)と〔3]を合わせた f(-a) f(a)=(2a³ + a²-a)(-2a³+ a²-a) =a²(2a-1)(a+1)(-2a²+a-1) [2] 0²0n²z fux)= 3x² fux tot +4x) = 0 1²2²3011 X=0 the 209 a0から a² > 0 2 7 また - 2a² + a−1 = -2(a− 1)² -- 8 よって, f(-a)f(α) <0から (2a-1)(a+1)>0 これを解いて a<-1, 1/23 <a (a≠0を満たす) (3) f(-2a)=-2a³ + a²-a=f(a), ƒ(2a)=2a³+ a²-a=f(-a) (2) より, f(-a) f(a)<0であるから f(-2a)f(−a)=f(a)f(-a) <0, Hoyv <0 f(a)f(2a)=f(a)f(-a) <0 ゆえに, f(x) = 0 は24とa,-aとa, a と24の間にそれぞれ解をもつ. よって、3つの解は2と2の間にある. 2 [2 かを定 なる担 (1) 2 (2) 2 (3) 2 (4) (1) t (2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

 高校数学Ⅲ、微分法の応用問題です。画像右側の「課題4」の解き方が分かりません。解答法を教えて頂けますと助かります。よろしくお願いします。

196 15 20 ○○○○2 最短のケーブルで都市をつなぐ方法 3つの都市の位置を地図上で確認したところ, 右のような△ABC の頂点上にあった。 このと き、どのように結べばケーブルの長さの総和が 10 最小になるだろうか。 座標平面を利用して考え B てみよう。 学習のテーマ 微分法の応用 複数の都市をネットワーク回線でつなげることを考える。このとき, コ ストを低くするためには、つなげるケーブルの長さの総和をできるだけ 短くする必要がある。 各都市をどのようにケーブルでつなげればよいか 考えてみよう。 H 3 3点をA(0, 3), B(2,0),C(20) とする。 △ABC の周および内部 に点Pをとるとき, AP+BP+CPが最小となる点Pの座標と, その ときの AP + BP + CP の最小値を求めてみよう。 ただし, AP +BP+CP が最小となるのは, 点PがABC の対称軸上にある ときであることがわかっている。 [2] ABCの最大の角が120°より大きい場合 △ABCの最大の角をはさむ2辺で3点を結ぶ 4 一般に, 3点A,B,Cを線分で結んでつなげるとき, その線分の長さ の総和が最小となるのは,次のように結んだときであることが知られて いる。 [1] ABC の最大の角が120° より小さい場合 [1] △ABCの内部に点Pをとり, 点Pから3点を 結ぶ B・ [2] B C A C 5 10 15 次に、他の4つの都市の位置を地図上で確認したところ, 正方形の 点上にあった。 ある生徒は, この4つの都市を右のように対角 Ar 線状につなげれば, ケーブルの長さの総和が最小 になると考えた。 点Pは対角線の交点である。 課題 4 R 前ページのことを利用すると、 正方形の内部 A に2点Q, R をとり、 右の図のようにして4 つの都市を結んだ方が, ケーブルの長さの総 和が短くなる場合があることがわかる。 その理由を考えてみよう。 B Q 課題学習 P R D 課題4のように正方形の内部に 2点 Q, R をとるとき, AQ+BQ+QR+CR+DR が最小となるときのつなげ方が, ケーブルの 長さの総和を最小にして、 正方形の頂点上にある4つの都市をつなげる 方法である。 2点 Q, R をどの位置にとればよいか, 座標平面を利用して考えてみ よう。 まとめの課題2 4点A(-1, 1), B(-1, -1), C(1, 1), D (11) がある。 実数 αが 0<a≦1の範囲にあるとき, 2点Q(-α,0), R (α, 0) を考える。このとき 20 5本の線分の長さの和 AQ+BQ+QR+CR+DR が最小となるようなaの植 を微分法を利用して求めてみよう。 *

回答募集中 回答数: 0
1/15