学年

質問の種類

数学 高校生

(2)の問題 なぜ紙に書いてあるようにやるとできないか教えてください。お願いします

292 ) 基本 182 対数方程式の解法 (1) 次の方程式を解け。 (1) logsx+logs(x-2)=1 (3) log2(x+2)=loga (5x+16) 指針 0000 (2) log2(x2+5x+2)-log2(2x+3)=2 ((3) 駒澤大] p.289 基本事項 対数に変数を含む方程式 (対数方程式) を解く一般的な手順は、次の通り。 ①数と (底に文字があれば) 底> 0, 底≠1 の条件を確認する。コ ② 異なる底があればそろえる。 ③ 対数の性質を使って変形し, logaA=loga B の形を導く。 4 真数についての方程式 A=Bを解く。 ④4 で得られた解のうち,①の条件を満たすものを求める解とする。 logo 勝に正 5 (1)真数は正であるから, x>0 かつx-2>0よりx2 方程式から logsx(x-2)=10g33 整理して x²-2x-3=0 2次方程式に帰着。 解答 したがって x(x-2)=3 ゆえに (x+1)(x-3)=0 よって x 2 であるから,解は x=3 x=-1,3 対 件 UP ■真数条件を満たすもの。 (2) 真数は正であるから x2+5x+2>0, 2x +30 ... ① (2) 真数> 0 から, 立 方程式から よって したがって 整理して ゆえに よって log2(x²+5x+2)=log24+10gz(2x+3) log2(x2+5x+2)=log24(2x+3)=& Rol x2+5x+2=4(2x+3) x2-3x-10=0 (x+2)(x-5)=0 x=-2,5 した Bagol<0.1 このうち, ①を満たすものが解であるから x=5 (3)真数は正であるから, x+2> 0 かつ 5x + 16 >0より loga (5x+16)= x>-2 log2(5x+16) log24 = 1 1/2 log2(x+16)である 2 log2(x+2)=1/210g2(5x+16) log2(x+2)2=10gz(5x+16) 等式①が導かれる。 ここで,①を満たすx の値の範囲を求めてもよ いが,式変形することに より導かれるxの値の うち、①を満たすものを 求める解とした方がらく。 |x=2のとき2x+3<0 となり,①を満たさない。 x=5のとき x²+5x+2>0,2x+3> 0 となり,①を満たす。 of から, 方程式は 底をそろえる。 よって x+2>0であるから ゆえに (x+2)=5x+16 整理してx2-x-12=0 よって (x+3)(x-4)=0 ゆえに x=-3,4 210g2(x+2) =log2(x+2)2 x> -2であるから,解は x=4ol 2 gol

解決済み 回答数: 2
数学 高校生

対数とその性質についての質問です。 写真で、水色マーカーで示した部分の変形がわかりません。log3の5はそのままだと思うのですが、1/log3の2がlog2の3になるのかわかりません。

log216 log224 4 log28 log2233 160 サクシード数学Ⅱ log327 of 803 2) log35 log, 27=log35.- (3)10ga log35 = log327=10g333=3 log27 10g216 log:7log716=- log28 log27 logg 7・10g716=- ..log716 10g78 1 Sols-log;23 -10g724 210g22 + log23 +10g25 log22+2log25 2 +10g23 + log25 1 1+2log25 3log,2 410g2=1 Jel =logx+10ga√y-log。ミス =10gax + q +1/210gy-1310822 したがってogx+ 1+ =p+ r 2 すなわち 510 10g5o60= log260 log250 log2 (22×3×5) log2 (2x52) 1 xy はよ 513(1) 図 210g10 3 + 210g log 10 21 210g10 (3×7) log 1021 (2) [図] このグラフは,(1)の [参考 て対称である。 x= logx log4x -- 1 log44 (2) ここで log25= log35 (1) log32 log43.log925.log58 10g23.10g35=ab log23 log225 log28 よって log 50 60 = 2+a+ab 1+2ab log24 10g29 log25 1 0 1 4 x log23 log252 log223 511 指針 log222 10232 log25 Hog23 210g25 3 3 a 2 2log23 log25 2 対数の定義 α = M logaM=pから, logaMMが成り立つ。このことを利用する。 (1)5108577 Ya+ (3) 〔図] このグラフは,(1 に2だけ平行移動したもの 20 log2/10g39 10g33 立 log32- 1 log39 log 2 log34 a 4logax = a 10gx4 x4 (4) y=log4- =- -log4x x log 32\ 2 1 LOS g32- 2 log32 2log32 (3) 81 log310 =(34) log3 10 = 34log 3 10 =3108310 Jei このグラフは,(1) のグラ である。 32 3 3 =- =10=10000 09: -0 210g32 Ug7 (5×7)-(10g57+10g75) (3) 4 参考 与えられた式をMとおき, 両辺の対数をと って解いてもよい。例えば,(2)は次のようにな (4 y (SI+1) - ) ( log75+10g77 ) る。 -log,5) (2) O 2 3 6 x -5+1)-(log,7+log,5) 7.log75 +10g57 ng75 ) M=a4logax とおく。 aを底として両辺の対数をとると って log, M=log, a 4loga x (5) loga M410g xl0gaa 七 =10g y=log44x= [図]

解決済み 回答数: 1
数学 高校生

172.3 これでも大丈夫ですか??

さい。 去。 ろえ -) g53 基本例題112 対数の表現 (1) 10g23=a, log35=6のとき, log210と1015 40 を a b で表せ。 1 logx b= log.xc= のとき, 10gabcxの値を求めよ。 8' 24 ga=1 (2) 10gxa= 1 3' (3) a,b,c を1でない正の数とし, 10gab=a, log.c=β, logca=y とする。 1 1 このとき, ab+By+ya=-+ + が成り立つことを証明せよ。 a B 指針 (1) 10,15, 40 をそれぞれ 分解して, 2, 3,5の積で表すことを考える。 (2) 10gabcx= logx abc (3) 右辺を通分すると, 分母に aβy が現れる。 これを計算してみる。 363510 1 また 解答 The Parent (1) log2 10=log2 (2-5) = log₂2+log25=1+log25 ここで よって log2 10 log₂ (2.5)=1+log₂5 底の変換公式を利用して, 10g25 をa, b で表す。 また 10g 15 40 は, 真数 40=5・2° に着目して,2を底とする対数で表す。 である。 10gxabcの値を求める。 1 log35 log32 log210=1+ab |_log25= log1540= == + 1/3 + a = r -= log₂3.log35=ab RETS S00 log2 40 log215 (2) ab+3 ab+3 a+ab a(b+1) = (2) logxabc=logxa+logxb+logxc= よって logabc X= 1 aβ+βy+ya...... ① aby log2 (5.2³) log2 (3.5) 1 logxabc a log25+3 Puiglog23+10g25 =2 aby=loga blogb clogca=logab. 1+1+1/0 であるから、①より したがって,等式は証明された。 1 1 1 + + 3 11 24 8 10gac.. loga blogac 1 2 cal =1 00000 [名城大] =aβ+βy+ya が成り立つ。 aduto 1 log32= log23 前ページ検討も参照。 ( 10g25 = ab (前半から) log■ [久留米大] (3) 別解 基本171 したがって (左辺) log 1 aβ=logablog.c=logac 同様に βy=10gba Ya=logcb =logac+loga+logcb 1 1 + + Y a B 練習 (1) 10g2=a, logs4=6とするとき, log158 をa, bを用いて表せ。 ③172 でない正の数とし, A=logza, Blog2 bとする。 a, bが 2=-1、ab=1を満たすとき, A, B の値を求めよ。 芝浦工大 (2)類 京都産大] (p.272 EX110 269 5章 30 対数とその性質

解決済み 回答数: 1
数学 高校生

170.2.ア 赤で書き加えた{}は記述式で解く場合書くべきですか??

M 1 人。 10 0<a<1 y=0 Ala²·ated 2²=0 ついては、 基本例題170 対数の値と計算 (1) 次の対数の値を求めよ。 (ア) 10g381mol) ( (2) 次の式を簡単にせよ。 (ア) 10g2 +21og₂ √10 指針 (1) 真数を (底)” の形に変形して, 10gaa=pの活用。 (2) 公式を用いて,次のどちらかの方針により計算する。 [ 10 [1] 1つの対数にまとめる (イ) 10g10 1000 とき (ウ) 10g/m 243 [2] 10ga2,10ga3 などに分解する なお,下の解答では,1つの対数にまとめる解法を示した。 【CHART 対数の計算 まとめる か 分解する 解答 (1) (ア) 10g381=10g334=4 1 (イ) 10g10- -=10g1010-=-3 1000 練習 1 170 log|(-) = -5/ == (イ) 10g3 √/12 +10g3 (ウ) 10g/√243=10g/3 (2)(ア) 10ga/1/3+210g=√/10=10g{1/(√10) 200 (イ) 10g3 √/12+log3- 3 -log3 3/3 2 2 |=log33=1 =logz8=log223=3 3 1 =10g3- 108: (√/12 + 2 + (3) (√3)= =log:(2√/3-2/3) Esgol (ウ)10go.01.10/10 (?)次の式を簡単にせよ。 1 3 3 2 2 p.266 基本事項 ①1,2 2 Orsol Tots coll You () 243=35=( (イ) 10g 12+10g 3 5 算数 (0) loga MAID (>0, +1) -log3 3/3 zgol) (Egol+ego) (1) (ア) log381=r とおくと 3=81 ゆえに 3=34 よって=4ol) (S) (イ)(与式) -10g10103 =-3 でもよい。 -5 =(1/3) (2) 別解(分解する解法) (ア) (与式)=10g24-log25 +2・・ -2.1/1/0 -(log₂2+log25) =2+1=3 (イ) (与式) =(2log₁2+log33) +(log33-log32) 1/310g 3=1 (1) 次の(ア)~ (ウ)の対数の値を求めよ。 また,(エ)の□をうめよ。 (イ) 10g/28 (ア)10g264 (エ) 10g/s = -4 31 23 1203 75+ -1001 6 267 () loga 18-log32 ITI 5章 30 対数とその性質

解決済み 回答数: 1
1/3