学年

質問の種類

数学 高校生

一体どういうことなのか教えて頂けませんか、、🙇🏻‍♀️ このα<2、β<2はどこからきているんですか?? あと写真の下にある考え方の部分でtとなっているのは何を示してるのですか?

例題 41 2次方程式の解の配置と解と係数の関係 2次方程式x2kx-k+2=0が, 次の条件を満たすような定数kの値の範囲を 求めよ。 (3) 2解がともに2より小さい (1) 2解がともに正 (2) 2解が異符号 (1) 判別式を D,2解を α,βとすると,2解がともに正であるためには D≥0, a+B>0, aß>0 であればよい。 D=k² − (−k+2) =k²+k−2 =(k+2)(k-1)≧0より k≦-2, 1≦k 解と係数の関係から (a−2) + (B-2)<0 (a-2)(8-2) >0 ④ より α+β<4 ◆異なる2解”とかかれていないときは, 重解の場合も含む。 a+B=2k>0 k>0 ... ② aβ=-k+2>0 k<2 ...(3) よって, ①, ②, ③ の共通範囲を求めて 1≦k<2 (2) 2解が異符号であるためには αβ=-k+2<0 したがって k>2 ? どこからきた (3) α<2,B<2^だから α-2<0, B-2<0 したがって,次の ①, ④, ⑤ を満たせばよい。 MADZO 0-10 2k<4 ゆえに k<2 ⑤ より αβ-2 (a+β) +4>0 -k+2-2.2k+4>0 ④ xtpso ?= 5 × ² > · J-) (I- & △ ①, ④, ⑤'の共通範囲を求めて 6 k-2,1≦k< -5k>-6 ゆえに k</1/…..⑤ 《2次方程式の実数解の符号》 ax2+bx+c=0(a≠0) の判別式をD,2解をα,βとすると 2解がともに正 ⇒D≥0, a+B>0, aß>0 2解がともに負 ⇔D≧0, a+ B <0, αB>0/ ・2解が異符号 ⇔ αB <0 ・・・④ート 12V± 3 -2 20 D≧0 は必要ない。 ◆α, βが2より小さいとい う関係式を使って ③ ④ を表すことが大切。 (負)+ (負)<0 (負)×(負)>0 065 1 62 k 2次方程式の解の正, 負や大、小を決定する問題は、 数Ⅰでは2次関数のグラフを利用した。 この解答のように, 解と係数の関係を使う場合は判別式D と, 解 α, βの和と積を考えるが 大きいときはα-t> 0, β-t>0 α, βがt より → として考える

回答募集中 回答数: 0
数学 高校生

青線の部分がわかりません助けてください汗

基本事項 I 2次方程式の実数解の符号 2次方程式 ax"+bx+c=0の2つの解を α, B, 判別式を D=6°-4acとする。 0 a>0かつB>0→ D20かつ α+B>0 かつ aB>) のく0かつB<0→ D20かつ α+β<0 かつ aB>0 3) αとBが異符号→ «B<0 22 2次方程式の実数解と実数kの大小 2次方程式 ax°+bx+c=0の2つの解を α, B, 判別式をDとする。 0 α>々かつB>k→D20かつ(α-k)+(B-1k)>0かつっ(α-k)(B-k)>0 ② αくたかつ Bく々→ D20かつ (α-k)+(B-k)<0かつ (α-k)(B-k)>0 ③ たがαとBの間→ (α-k)(B-k)<0 このとき,常に D>0である。 解説 <2次方程式の実数解の符号> 【O の証明) (→)a, Bは正の数であるから,実数であり また,α>0かつ B>0ならば α+β>0, aB>0は明らかに成り立つ。 (-)D20 から,α, Bは実数(正の数,0,負の数のいずれか)である。 aB>0 より,αとBは同符号であり,α+B>0から [2 の証明 のと同様にして証明できる(証明略)。 [3 の証明] (→)αとBが異符号なら aB<0は明らかに成り立つ。 D20 a>0, B>0 (=) aB<0 ならば,解と係数の関係より, aB=€であるからこく0 C C a a a'(>0) を両辺に掛けて ac<0 したがって, αとBは実数であり aB<0 から, αとβは異符号である。 注意 の(一)では aB<0だけで条件 D20 も含み, D20は不要である。 また, 20であるから D=6°-4ac>0 <2次方程式の実数解と実数 k の大小> αくk→a-k<0, α=k→-k=0, α>k→-k>0 であるから,Dの 0~③と に考えて, α-k, B-kの符号を調べればよいことがわかる。 a>0の場合,2次関数 f(x)=ax°+bx+cのグラフ(下図)から, 次のことが成り立つ。 0 α>k, B>k→ D20, (軸の位置)>k, f(k)>0 2 α<k, B<k→ D20, (軸の位置)<ん, f(k)>0 3 kがaとBの間 → f(k)<0 a<0の場合は,①, ②, ③ で, それぞれf(k) の符号が逆になる。 D20 軸くん S(R)>0 f(R)<0 D20 軸>k F(R)>0 k 軸 Bk x 軸 B ka B 0 x

回答募集中 回答数: 0