学年

質問の種類

物理 高校生

(1)について教えてください。 加速度を求める公式として2枚目の公式を習ったのですが答えは違う公式を使っています。2枚目の公式はいつ使う物ですか🙇‍♀️?

(基本例題 3等加速度直線運動 x軸上を一定の加速度で運動する物体が、 時刻 t=0sに原点Oを正の向きに12.0m/sの速度で 出発した。 その後, 物体はある地点で折り返し、 t=5.0sには負の向きに8.0m/sの速度になった。 (1) 物体の加速度の向きと大きさを求めよ。 t=0s 0 t=5.0s 12.0m/s 8.0m/s (2)物体が折り返す時刻と、このときの物体の位置(x座標) を求めよ。 (3)t=5.0sでの物体の位置(x座標)と,この時刻までに移動した距離を求めよ。 解答 (1) 加速度をα[m/s] とすると,v=vo+αt から, -8.0=12.0+α×5.0 よって, a=-4.0m/s² x軸の) 負の向きに 4.0m/s^ (2) 折り返す地点での速度は0m/sである。 折り返す時刻をt[s] とすると, = v +αt から, 4 [m/s] 12.0 0=12.0+(-4.0)xt よって, t=3.0s S₁ 3.0 5.0 0 このときの位置をx[m] とすると, x=vot+/12/12 から, Sa t(s) -8.0 x=12.0×3.0+ 1/2×(-4.0)×3.02=36-18=18m (3)4=5.0sでの位置をx'[m] とすると, x=vot+ 1/12から 時刻・・・ 3.0 s, 位置…18m x=12.0×5.0+1/2×(-4.0)×5.0°=60-50=10m 10 X 18 (2)の結果から, t=3.0s 以降は負の向きに移動するので、 t=5.0sまでに移動した距離 s 〔m〕は. 別解 右上のtグラフの面積S, 〔m) Sz[m] を用いて, s=Si+Sz=18+8.0=26m x'=S,-S=18-8.0=10m 途中で運動の向きが変わる 場合は、 s=18+ (18-10)=26m 位置・・・10m, 移動した距離...26m (移動した距離) 原点からの変位 運動の式)」を使うか

未解決 回答数: 1
数学 高校生

左のページは絶対値取らないでも計算できますが,右ページは場合分けする必要があるっていうのの理由を知りたいです。どういう場合に場合分けをしなければいけないかは把握してます

73 00000 (2) x-2<0 -1<0-1≥0 X-2≥0 72 基本 40 絶対値を含む方程式 次の方程式・不等式を解け。 (1)|x-1|=2 (2)|2-3x|=4 (3)|x-2|<3 指針 ただし,(1)~(4)の右辺はすべて正の定数であるから, 絶対値記号を含むときは、場合分けをして、絶対値 記号をはずして考えるのが基本である。 |A|= 次のことを利用して解くとよい。 >0 のとき 方程式|x|=cの解はx=±c -c<x<c 不等式|x|<c の解は 不等式|x|>c の解は x<-c, c<x (1)|x-1|=2から x-1=±2 x1=2 または x1=-2 x=3,-1 (4)基本 A 11=1_^ -A 例題 41 絶対値を含む方程式 P.63 次の方程式を解け。 (1) x-2|=3x (2)|x-1|+|x-2|=x AKO 絶対値記号を場合分けしてはずすことを考える。 それには, |x-1=Xとおくと |XI=2 よって X=±2 | (2) |2-3x|=|3x-2 であるから, 方程式は 3x-2|=412-3x=4から 2-3x=±4 としてもよいが、 |= {_^ |A|= -A (A≧0 のとき) (A < 0 のとき) であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち | 内の式 =0の値である。 (1)x2≧0x20, すなわち, x≧2とx<2の場合に分ける。 (2) 2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1 2 であるから,x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 (1)[1] 章 19 2 x 場合の分かれ目 41次不等式 解答 すなわち よって ゆえに 3x2=±4 答 すなわち 3x2=4 または 3x2=-4 |-4|=|A|を利用 のとき, 方程式は x-2=3x これを解いて x=-1 x=-1 は x2を満たさ ない。 よって (3)|x-2|<3から x=2, -2 の係数を正の数に [2] x<2のとき, 方程式は -(x-2)=3x 1 3 -3<x-2<3 (3),(4)x2=Xと おくと解きやすくな これを解いて x= 2 x= は x<2を満たす。 2 重要! 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないかを 必ずチェックすること (解答の の部分)。 1 各辺に2を加えて -1<x<5 |X|<3から [1], [2] から, 求める解は x= (4)|x-2|>3から x-2<-3, 3<x-2 -3<X<3 したがって x<-1, 5<x |X|>3から 最後に解をまとめておく。 -2x+3=x X<-3, 3<X これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 - をつけてをはず す。 x-1≧0, x-2 < 0 x=1は1≦x<2を満たす。 (x-1)+(x-2)=x <x-1>0, x-2≧0 2 (2)[1] x<1のとき,方程式は (x-1)(x-2)=xx-1<0,x-2<0→ すなわち 絶対値を数直線上の距離ととらえる |b-alは,数直線上の2点A(a),B(b)間の距離を表しているから, x-2は数直線」 座標が2である点と点P(x) の距離ととらえることができる。 よって、(3),(4)の不等 満たすxの値の範囲は、下の図のように表すことができる。 |x-21=3 x-21>3 \x-21=3 [3] 2≦xのとき, 方程式は 2x-3=x すなわち これを解いて x=3 以上から、 求める解は y=x-21のグラスと方程式 x=3は2≦xを満たす。 x=1, 3 最後に解をまとめておく。

未解決 回答数: 1
生物 高校生

ここの解き方がいまいち分かりません。誰か詳しく解説してくれる人いたら教えてください。

続く。 の Ⅱ 河川や土壌などの環境中には、そこに生息する生物の排出物や遺体, はがれた体表組織 の一部などに由来する多くのDNAが含まれている。 このようなDNAを「環境 DNA」と いう。現在では,環境DNAに含まれる生物種特有のDNA 領域 (DNA バーコード)を増 幅して網羅的に解析する「環境DNA メタバーコーディング」という手法が開発されている。 これにより、 直接生物を捕獲することなく、その地域に生息する可能性のある生物種をま とめて把握することができる。 たとえば,ある地域で魚類について環境DNAメタバーコーディングを行う場合には、 いくつかの地点で採水を行い,その中に含まれるDNAを抽出した後、特殊なプライマー を添加してPCR法を行い、DNA バーコードとなるDNA断片を増幅する。この増幅され た DNA断片を次世代シーケンサー(多数のDNA 断片の塩基配列を同時に決定すること とす ができる装置)にかけ/ 魚類の塩基配列データベースと照合すること 断片がどの種に由来するものかを解析できる (図4)。 それぞれの DNA 目 |ATATTGGACAT 採水 DNAの抽出 増幅 ATTTTGCACAG ATATTGGACAT CTGGTGCACAG CTGGTGCTCAT CTGGCCCTCAC ATTTTGCACAG CTGGTGCACAG CTGGTGCTCAT [CTGGCCCTCAC ATATTGGACAT ATTTTO CTGGTGCTCAT CTGGCCCTCAC データベース との照合 CD [ATTTTCCACAG 図4 環境 DNAメタバーコーディングを模式的に示したもの -64-

回答募集中 回答数: 0
現代文 高校生

現代文の質問です。なぜ、コメンテーターにとって人口減少が便利な言葉なのかという問いで、答えが、実際に因果関係のない人口減少で危機を煽っても、誰も傷つけない、だそうです。なぜ、文章中にある、一般の人を騙しやすい、が理由にならないのでしょうか。

8 8 【文章Ⅱ】 ちまた 2065年に約8800万人まで減少する一方で、高齢者の割合は4割近くに上昇すると推計 ① 日本の行く末を論じる上で、巷で騒がれているのが「少子高齢化で人口減少時代に突入する から何かと大変」という話題だ。国立社会保障・人口問題研究所によれば、日本の人口は、 人口増加こそが幸福をもたらすかのような風潮だ。 ② この推計に乗っかって、新聞、書籍、経済誌、ネット記事に至るまで、人口減少時代に起こ るであろう、ありとあらゆる危機の事象予測とそれに対する処方箋が考察されている。まるで、 かわいまさし うはいかない。 ⑤ というのも、その地域の人口が減れば当然、いずれは行政規模の適正化のため、市町村を合 併しなければならない。民間企業なら地方の支店を減らすくらいで済むが、地方公共団体はそ 地方公共団体の関係者だと筆者は見ている。人口が減り続けたら、最も困るのは彼らだからだ。 版されるなど、世間の耳目を引いている。 談社現代新書)だ。これが45万部を超える大ベストセラーとなり、類似したムック本が複数出 ③その火に油を注いだのが、2017年6月に発刊された河合雅司氏の著書『未来の年表』(講 4 とはいっても、実はこの「人口減少危機論=人口増加幸福論」を支持する“世間〟とは、主に ⑥ 日本では過去3回、自治体が大合併した歴史がある。(図1)日本には1888年(明治2 年)時点で、自然集落の町単位で7万以上もの自治体があったが、翌1889年の「明治の大 合併」によって、1万5859の市町 に再編された。 らに合併が進むかもしれない。 することを目標に掲げていたから、さ 府は、もともと自治体数を1000に 治体数は1718で止まっている。政 年(平成26年)の合併を最後に全国自 合併」「平成の大合併」を経て、2014 戦後も市町村合併は進み、「昭和の大 図1 自治体の合併の歴史 1,242 10,982 1,797 8,518 1,903 1,574 663 1,994 577 568 自治体数 年月 計 市 町 村 |1888年 (明治21年 ) 1889年(明治22年) | 71,314 71,314 15,859 39 15,820 1922年(大正11年) 12,315 91 1945年(昭和20年10月) 1947年(昭和22年 8 月) 10,505 1953年(昭和28年10月) 9,868 1956年(昭和31年4 年4月) 4,668 10,520 205 210 1,784 | 8,511 286 1,966 7,616 495 1,870 | 2,303 1956年(昭和31年9月) 3,975 498 1962年(昭和37年10月) 1961年(昭和36年6月) 3,472 556 1,935981 3,453 558 1,982 913 1965年(昭和40年4月) 3,392 560 2,005 827 1975年(昭和50年4月 3,257 643 1,974 640 2,001 601 1995年 (平成 7年 4月 3,234 1999年 (平成11年4月) 3,229 671 1,990 3,218 675 ,981 | 562 1985年 (昭和60年 4月 3 月月月月月 年年年 18 786 757 2002年 (平成14年4月) 2004年(平成16年5月) 3,100 695 _ 1,872 533 2005年(平成17年4月) 2,395 739 1,317 339 1,821 2006年(平成18年3月) 2010年 (平成22年4月) 1,727 2014年(平成26年4月) 1,718 777 846 198 198 790 745 183 (総務省 「市町村数の変遷と明治 昭和の大合併の特徴」 より ) 25・・ しないことが分かる。 このように過去を振り返ると、人口 あったからだ。したがって、人口減少で地方自治体が消滅するという相関関係は必ずしも成立 増加時代にあっても自治体の数は減っている。そこには行政の効率化という大きなメリットが 2017年には約274万人と50万人以上減った。 事実、ピークの1994年には約328万人もいた地方公務員の数は、その後減少を続け、 り 自治体が合併すれば、2つの役場が1つで済むわけだから、課長や係長といったポストも1 つずつ失うことになるだろう。あるいは将来的にリストラで職場そのものを失うかもしれない。 ここう そこで、地方役人らは何とかして糊口をしのごうと、「地域に人口を増やそう 尾 Alchy 30 L

未解決 回答数: 1
1/239