学年

質問の種類

数学 高校生

なんで2番の問題はK=0とかあるんですか?

次のxについての方程式の解を判別せよ.ただし,kは実数と する. (1) 2-4x+k=0 精講 (2) kx²-4x+k=0 16-484 16-4k 「解を判別せよ」とは,「解の種類(実数解か虚数解か) と解の個数 について考えて,分類して答えよ」という意味です。ということは、 (1) (2)も2次方程式だから, 判別式を使えばよい!!」と思いたくな るのですが、はたして…...... 次のように分類できる. (i)4-k0 すなわち, k<-2,2<kのとき D<0だから, 虚数解を2個もつ (ii) 4-k=0 すなわち,k=±2 のとき D = 0 だから重解をもつ () 4-k20 すなわち, -2<k<2 のとき D> 0 だから, 異なる2つの実数解をもつ (ア)(イ)より, k= 0 のとき, 実数解1個 FOR 8 k<-2,2くんのとき, 虚数解 2個 k=±2 のとき,重解 2<k<0,0<k<2のとき, 異なる2つの実数解 注 (2)のk=0 の場合と k=±2 の場合は,いずれも実数解を1個も一 ているという意味では同じように思うかもしれませんが, 2次方程 の重解は活字を見てもわかるように元来2個あるものが重なった状態 を指し, 1次方程式の解は、元来1個しかないのです。 だから, 答案 は区別して書かないといけません. 仮に,「kx²-4x+k=0が異な 解をもつ」 となっていたら 「k≠0 かつ D≠0」 となります. 問題文の1行目をよく読んでください. 「次のxについての方程式・・・・・・」 とあります. 「次のxに いての2次方程式 ・・・・・・」とは書いてありません. よって, の方程式は k= 0 となる可能性が残されているのです. だから, のxについての2次方程式…………」 となっていたら、 すでに 「k≠0_ 前提になっていることになり, 解答の ) は不要となります. (1) 2-4x+k=0 の判別式をDとすると, D 4 =4-k だから. この方程式の解は次のように分類できる. (i) 4-k<0 すなわち, k>4のとき DO だから、虚数解を2個もつ D<0 (靴) (ii) 4-k=0 すなわち,k=4のとき D=0 だから,重解をもつ D=0 参考 (i) 4-k>0 すなわち, ん<4のとき <D>0 D> 0 だから, 異なる2つの実数解をもつ (i)~ (ii)より, k>4 のとき, 虚数解2個 k=4 のとき, 重解 しん<4のとき、 異なる2つの実数解 (2) (ア)=0 のとき k=0のときは1次 与えられた方程式は4x=0 (イ)のとさ .. x=0 kx2-4x+k=0 の判別式をDとすると D=4k だから、この方程式の解は 4 方程式なので判別式 は使えない ポイント 判別式は2次方程式でなければ使えないので, 2 数が文字のときは要注意 演習問題 17 (1) 2-(k+1)x+k2=0 を実数とするとき,次の2次方程式の解を判別せよ. (2) kx2-2kx+2k+1=0

未解決 回答数: 1
数学 高校生

高校数学の問題です。 ( 1)を判別式で解いたのですが 答えの範囲が出てきませんでした。 判別式で解く方法で教えてください。

実戦問題 13 2次方程式の解の存在範囲 mを定数として, 2次方程式x+2(m+2)x+2m+12 = 0... ① について考える。友 (2) 方程式 ①が2より大きい解と2より小さい解を1つずつもつとき, m の値の範囲は m<オカである。 (1)方程式 ①が異なる2つの正の解をもつときの値の範囲は アイ <m< ウエ である。 (3) 方程式 ①が1と2の間、2と3の間にそれぞれ解を1つずつもつとき,mの値の範囲は 解答 (1) f(x)=x+2(m+2)x+2m +12 とおくと f(x) = {x+(m+2)}2-(m+2)^+2m+12 =(x+m+2)-m²-2m+8 @ 方程式 ①が異なる2つの正の解をもつとき, y = f(x) のグラフは次 の (i)~ (iii) を満たす。 キクケ コ <<サシ y=f(x)のグラフは頂点が (-m-2, -m²-2m+8) であり、下に凸の放物線であ ( f (1 Key 1 (i) x軸と異なる2点で交わる。 y=f(x) (不 (ii) 軸が x > 0 の部分にある。 (iii) f(0) > 0 (i)より, 頂点のy座標は負であるから m²-2m+8< 0 0 f(0) 2次方程式 ① の判別式を考え O x D -m-2 4 = (m+2)² − (2m+12) > よって,m²+2m-80より (-2)(+4)>0 としてもよい。 ゆえに m<-4, 2<m (ii)より, 軸について x=-m-2> 0 ゆえに m<-2 C (Ⅲ)より,f(0) =2m+120 であるから m>-6 (i) ~ (Ⅲ)より, 求めるmの値の範囲は -6<m<-4 (-6-4-2 2 m (2) 方程式①が2より大きい解と2より小さい解をもつとき,y=f(x) y=f(x) のグラフは下に凸 Key 1 のグラフはf(2) を満たす。 f(2) = 6m+24 < 0 ゆえに m<-4 y y=f(x) 放物線であるから, f (2) <0 満たせば、必然的にx>2 範囲とx<2の範囲のそれ れにおいて, 1度ずつx軸と わる。 Key (3) 方程式 ①が1と2の間,2と3の間にそれぞれ 解を1つずつもつとき,y=f(x) のグラフは次 の (iv) ~ (vi) を満たす。 (iv) f (1) > 0 (v) f(2) <0 (vi) f(3)>0 (iv) より f(1) = 4m+170 であるから (v)よりf(2)=6m+24< 0 であるから 17 m>- 4 (vi) よりf(3) = 8m+33> 0 であるから (iv)~ (vi) より, 求めるmの値の範囲は - m <-4 攻略のカギ! y=f(x) 2 1 3 x m>- 388 33 33 <m<4 17 33

回答募集中 回答数: 0
数学 高校生

赤線の平方完成のやり方教えてください

最小 [ M(a)={a²-4a+5 (a>4) と表される。 d²-4a+5=(a-2)+1に注意すると, -ISxslの中央の値は0 <0 すなわち 4>1のとき (41 のように、x=1g は区間の より左側にあるから、x=1で最 る。 y=m(a) およびy=M (a) のグラフはそれぞれ右の図の実線部 分のようになる。 このグラフから,最小値は αが大きくなるに従って徐々に小さ 首は F(1)=2a-1 -d=0 すなわち a=1のとき くなるが, αが2より大きくなると最小値は一定であることがわと一致するから、x=1.1で 1のように、x=1gは区間の は最初αが大きくなっても一定のままであるが,αが4より大きくなる。 なるに従って最大値も大きくなることがわかる。 直は (-1)=/(1)=1 αは定数とする。 -1≦x≦1 における関数 f(x)=x2+2(a-1xについて-4> すなわち a<1のと 練習 ③ 82 (1) 最小値を求めよ。 (2)最大値を求めよ。」のように、軸x=1-aは f(x)=x²+2(a−1)x={x+(a−1)}²−(a−1)² より右側にあるから、x= y=f(x) のクラフは下に凸の放物線で,軸は直線x=1-a (1)[1] 1-a< - 1 すなわち α>2の とき [1] 軸] x=1-a 図 [1] のように, 軸 x=1-αは区間の 左外にあるから, x=-1で最小とな る。 最小値は 最小 f(-1)=(-1)+2(4-1) ・(-1) =-2a+3 三間 1 [2] -1≦1-a≦1 すなわち あ 0≦a≦2のとき 細か 図 [2] のように, 軸 x=1-αは区間に 含まれるから, x=1-αで最小となる。 |x=-1 [2]\ 軸 x=l-a 小 x=1 となる。 値は ら (-1)=-20+2 1のとき x=1 まと1のとき x=-1, 1 の 1のとき x=-1 7は定数とする。 けを (1) 最小値を求めよ。 式を変形すると (x)のグラフは上に a≦x≦a+1 3 <. at 1のとき X=

解決済み 回答数: 1
1/273