学年

質問の種類

数学 高校生

なんで2番の問題はK=0とかあるんですか?

次のxについての方程式の解を判別せよ.ただし,kは実数と する. (1) 2-4x+k=0 精講 (2) kx²-4x+k=0 16-484 16-4k 「解を判別せよ」とは,「解の種類(実数解か虚数解か) と解の個数 について考えて,分類して答えよ」という意味です。ということは、 (1) (2)も2次方程式だから, 判別式を使えばよい!!」と思いたくな るのですが、はたして…...... 次のように分類できる. (i)4-k0 すなわち, k<-2,2<kのとき D<0だから, 虚数解を2個もつ (ii) 4-k=0 すなわち,k=±2 のとき D = 0 だから重解をもつ () 4-k20 すなわち, -2<k<2 のとき D> 0 だから, 異なる2つの実数解をもつ (ア)(イ)より, k= 0 のとき, 実数解1個 FOR 8 k<-2,2くんのとき, 虚数解 2個 k=±2 のとき,重解 2<k<0,0<k<2のとき, 異なる2つの実数解 注 (2)のk=0 の場合と k=±2 の場合は,いずれも実数解を1個も一 ているという意味では同じように思うかもしれませんが, 2次方程 の重解は活字を見てもわかるように元来2個あるものが重なった状態 を指し, 1次方程式の解は、元来1個しかないのです。 だから, 答案 は区別して書かないといけません. 仮に,「kx²-4x+k=0が異な 解をもつ」 となっていたら 「k≠0 かつ D≠0」 となります. 問題文の1行目をよく読んでください. 「次のxについての方程式・・・・・・」 とあります. 「次のxに いての2次方程式 ・・・・・・」とは書いてありません. よって, の方程式は k= 0 となる可能性が残されているのです. だから, のxについての2次方程式…………」 となっていたら、 すでに 「k≠0_ 前提になっていることになり, 解答の ) は不要となります. (1) 2-4x+k=0 の判別式をDとすると, D 4 =4-k だから. この方程式の解は次のように分類できる. (i) 4-k<0 すなわち, k>4のとき DO だから、虚数解を2個もつ D<0 (靴) (ii) 4-k=0 すなわち,k=4のとき D=0 だから,重解をもつ D=0 参考 (i) 4-k>0 すなわち, ん<4のとき <D>0 D> 0 だから, 異なる2つの実数解をもつ (i)~ (ii)より, k>4 のとき, 虚数解2個 k=4 のとき, 重解 しん<4のとき、 異なる2つの実数解 (2) (ア)=0 のとき k=0のときは1次 与えられた方程式は4x=0 (イ)のとさ .. x=0 kx2-4x+k=0 の判別式をDとすると D=4k だから、この方程式の解は 4 方程式なので判別式 は使えない ポイント 判別式は2次方程式でなければ使えないので, 2 数が文字のときは要注意 演習問題 17 (1) 2-(k+1)x+k2=0 を実数とするとき,次の2次方程式の解を判別せよ. (2) kx2-2kx+2k+1=0

未解決 回答数: 1
数学 高校生

高校数学の問題です。 ( 1)を判別式で解いたのですが 答えの範囲が出てきませんでした。 判別式で解く方法で教えてください。

実戦問題 13 2次方程式の解の存在範囲 mを定数として, 2次方程式x+2(m+2)x+2m+12 = 0... ① について考える。友 (2) 方程式 ①が2より大きい解と2より小さい解を1つずつもつとき, m の値の範囲は m<オカである。 (1)方程式 ①が異なる2つの正の解をもつときの値の範囲は アイ <m< ウエ である。 (3) 方程式 ①が1と2の間、2と3の間にそれぞれ解を1つずつもつとき,mの値の範囲は 解答 (1) f(x)=x+2(m+2)x+2m +12 とおくと f(x) = {x+(m+2)}2-(m+2)^+2m+12 =(x+m+2)-m²-2m+8 @ 方程式 ①が異なる2つの正の解をもつとき, y = f(x) のグラフは次 の (i)~ (iii) を満たす。 キクケ コ <<サシ y=f(x)のグラフは頂点が (-m-2, -m²-2m+8) であり、下に凸の放物線であ ( f (1 Key 1 (i) x軸と異なる2点で交わる。 y=f(x) (不 (ii) 軸が x > 0 の部分にある。 (iii) f(0) > 0 (i)より, 頂点のy座標は負であるから m²-2m+8< 0 0 f(0) 2次方程式 ① の判別式を考え O x D -m-2 4 = (m+2)² − (2m+12) > よって,m²+2m-80より (-2)(+4)>0 としてもよい。 ゆえに m<-4, 2<m (ii)より, 軸について x=-m-2> 0 ゆえに m<-2 C (Ⅲ)より,f(0) =2m+120 であるから m>-6 (i) ~ (Ⅲ)より, 求めるmの値の範囲は -6<m<-4 (-6-4-2 2 m (2) 方程式①が2より大きい解と2より小さい解をもつとき,y=f(x) y=f(x) のグラフは下に凸 Key 1 のグラフはf(2) を満たす。 f(2) = 6m+24 < 0 ゆえに m<-4 y y=f(x) 放物線であるから, f (2) <0 満たせば、必然的にx>2 範囲とx<2の範囲のそれ れにおいて, 1度ずつx軸と わる。 Key (3) 方程式 ①が1と2の間,2と3の間にそれぞれ 解を1つずつもつとき,y=f(x) のグラフは次 の (iv) ~ (vi) を満たす。 (iv) f (1) > 0 (v) f(2) <0 (vi) f(3)>0 (iv) より f(1) = 4m+170 であるから (v)よりf(2)=6m+24< 0 であるから 17 m>- 4 (vi) よりf(3) = 8m+33> 0 であるから (iv)~ (vi) より, 求めるmの値の範囲は - m <-4 攻略のカギ! y=f(x) 2 1 3 x m>- 388 33 33 <m<4 17 33

回答募集中 回答数: 0
数学 高校生

なぜ81の(2)と82の(2)で場合分けのやり方が違うのですか?

138 基本 例題 81 2次関数の最大・最小 (3) 00000 αは正の定数とする。 0≦x≦a における関数 f(x)=x-4x+5について、次の 問いに答えよ。 (1) 最小値を求めよ。 最大値を求めよ。 指針 区間は0≦x≦a であるが, 文字αの値が変わると, 区間の右端が動き、 最大・最小と なる場所も変わる。よって、区間の位置で場合分けをする。 (1)y=f(x)のグラフは下に凸の放物線で、軸が区間のさまに含まれれば頂点で 小となる。ゆえに、軸が区間 0≦x≦αに含まれるときと含まれないときで場合分 をする。 [1] [2] |軸 軸 軸が区間 の外 軸が区間 内大量 #31 大量 最小 -1 |最小 67x8 (2)y=f(x) のグラフは下に凸の放物線で,軸から遠いほど受)を の値は大きい(右の図を参照)。 よって、区間 0≦x≦α の両端から軸までの距離が等しくな(S 軸 [2] 4≧2のとき [2] 図[2]のように, 軸 x=2は区間 に含まれるから, x=2で最小と なる。 最小値は [1] [2] から f(2)=1 f0<a<2のとき a2のとき 最小 x=0x=2x=a x=αで最小値α² -4a+5 x=2で最小値1 (2) 区間 0≦x≦a の中央の値は 1/2 である。 a [3] 01/12 すなわち <a<43] 頂点で最小。 (1) 139 最大 <指針 ★★ の方針。 区間 0≦xaの中央 20 が、軸 x=2に対し左右 どちらにあるかで場合 する のとき 図 [3] のように,軸 x=2は区 間の中央より右側にあるから, x=0で最大となる。 最大値は a f(0)=5 [4] =2 すなわちa=4 のとき [4] 図 [4] のように,軸 x=2は区 x = 0 x=a =1/2x=2 x=0の方が軸から 分けの境目となる。 るような (軸が区間の中央に一致するような) αの値が場合 ★ = 近 遠 x=0,4で最大となる。 間の中央と一致するから, 最大 最大 <軸と x = 0, a 等しい。 [3] 軸が区間の 中央より右 [4] 軸が区間の 中央に一致 軸 区間の両端 から軸まで の距離が等 しいとき。 [5] 軸が区間の 中央より左 軸 最大値は f(0)=f(4)=5 x=0 x=4 x=21 最大 [5] 2< // すなわちα>4のとき [5] 最大 最大 区間の 区間の 中央 [5]のように,軸 x=2は区 間の中央より左側にあるから, 軸 ●最大 Ax=a0) 中央)+(1 区間の 中央 x=αで最大となる。 最大値は [3]~[5] から f(a)=d²-4a+5 x = 0 x=a x=2x=0 20 f(x)=x-4x+5=(x-2)2+1 解答 y=f(x)のグラフは下に凸の放物線で,軸は直線x=2 [1] 0<a<2のとき (1) 軸x=20≦x≦aの範囲に含まれるかどうかで場合 分けをする。 f(x)=x2-4x+22 -22+5 0<a<4のとき x=0で最大値5 この 最小 a=4のとき x=0,4で最大値5 にた 指針の方針。 [1] 軸x=2が区間0≦x≦a に含まれるかどう a4のとき x=αで最大値α-4+5 10.0

未解決 回答数: 1
数学 高校生

考え方で、⑴では、最大値が負であればよくて、⑵では最小値が正であればよいとありますが、どっちが最大値でどっちが最小値でみるのか、見分け方はありますか?(負であればよい、正であればよいという部分は、不等号の向きできまっていると思うのでわかっています) また、⑵で、場合分けを... 続きを読む

Dark 例題 75 ある区間でつねに成り立つ不等式 次の条件が成り立つような定数の値の範囲を求めよ。 **** 125x で、つねに が成り立つ。 4ax+4g+8<0 2x、つねに が成り立つ。 4ax+4g+8>() 第2 考え方 グラフで考える。/(x)=xax+44 +8 のグラフは下に凸 区内での人質が息であればよい。 であればよい。 (2)区内での最小 f(x)=(x-24-40°+40 +8 f(x)=x-4ax+40 +8 とおくと (1) y=f(x)のグラフは下に凸なので 2 である. 6での最大値(2)または(6) つねに f(x) <0 となる 条件は、 A どちらも負になれば よいから、場合分け はしない。 f(2)=-4q+120 (6)=-20a+44 < 0 これをともに満たすのは、 a>3 (2) y=f(x)のグラフは下に凸で,軸は直線x=24 (i) 2a <2 つまり α <1 のとき 26 での最小値はF(2) よって, 求める条件は, 下に凸なので、最小 となるのは軸. 左端 x=2. 右端x=6の いずれか (2)=-4a+12> 0 したがって a<3 26x 軸の位置で3通りに 場合分け これと a <1より, a <1 (ii) 2≤2a≤6) 1Sa≤3 よって、 求める条件は, f(2a)=-4a²+4a+8>0 必ず、場合分けした 範囲と合わせる。 2x6 での最小値は(24) したがって,-1<a<2 2 2a 6x これとsaより, 1sa <2 (i) 6 <24 つまり 4>3のとき 2x6 での最小値は (6) a-a-2<0 (a+1)(a-2)<0 -1<a<2 よって、求める条件は, f(6)=-20g+44 > 0 したがって, a<1 これとα>3 より 解なし よって, (i)(iii)より, a<2 (i) (日) 2 a ●場合分けしたものは、 最後はドッキング

回答募集中 回答数: 0
数学 高校生

(4)でなぜ分母の4aが消えているんですか?

基本 例題 74 2次関数の 2次関数y=ax2+bx+cのグラフが右の図のようになるとき, 次の値の符号を調べよ。 基本例 b2-4ac (1)a b C a+b+c X /p.124 基本事項 2 a-b+c 放物線y=- れる放物線 次の 指針 グラフが上に凸か下に凸か、頂点の座標,軸の位置,座標軸 との交点などから判断する。 |指針 解泪 y b2-4ac (1) αの符号 α>0⇔下に凸 a<0⇔上に凸 b (2)の符号 頂点のx座標- - に注目。 2a αの符号とともに決まる。 I 4a a+b+c-- -1 0 C 1 b 2a 上に凸 1 (3)c符号y軸との交点が点 ( 0, c) (4)62-4ac の符号 頂点の座標 - (5)a+b+cの符号 αの符号とともに決まる。 la-b+c T+GS+ S y=ax2+bx+cでx=1とおいたときのの値。 y=ax2+bx+cでx=-1とおいたときのの値。 b2-4ac に注目。 4a (6) a-b+cの符号 解答 (1) グラフは上に凸であるから a<0 (*) y=ax2+bx- 解答 b (2) y=ax2+bx+c(*) の頂点の座標は 2a' b2-4ac 4a b 頂点のx座標が正であるから ・>0 b2-4ac Aa 2a よって b 2a <0 (1)より,a<0であるからb>0 AB > 00 >0⇔AとB 同符号 (3) グラフはy軸とy<0の部分で交わるから c<0 A <OAとBは b2-4ac B 符号。 (4) 頂点のy座標が正であるから (1) より, a< 0 であるから b2-4ac > 0 (5) x=1のとき 4a >0 (4) グラフとx 軸が 異なる2点で交わ から ac y=a・12+6・1+c=a+b+c グラフより, x=1のときy>0であるから a+b+c>0 (6) x=1のとき y=α・(-1)'+6(-1)+c=a-b+c グラフより くのときゃくであるから を導くことができる 詳しくは p.175を 照。

未解決 回答数: 1
数学 高校生

高校数学の問題です。 上が問題で下が解答です。 (2)の問題で、解答の赤文字(黒丸)の部分の 考え方がわかりません。 教えて下さい。

実戦問題 9 区間が変化する2次関数の最大・最小 2次関数 f(x) = x-6x-3a +18 について (1) y=f(x) のグラフは,点(ア at ウ 1)を頂点とする下に凸の放物線である。 (2)a≦x≦a+2 における関数 f(x) の最小値をm(a) とする。 m(a) = a². オ]a+[カキ] (i) a< I のとき (ii) エ ≤as のとき m(a) ケコ α+サ (iii) <b ク m(a) = a² シ α+スセ (3)0≦a≦8 の範囲でαの値が変化するとき, m(a) は 中 ナニ a = タ のとき最大値 [チツ] a= のとき最小値 である。 ヌ ネ また, a = " 八 のとき m(a)=4 となる。 解答 Key 1 2 (1) f(x)=x-6x-3a +18= (x-3)2-3a+9 よってy=f(x) のグラフは,点(3, -3+9)を頂点とする下に凸軸は直線x=3 の放物線である。 a +2 <3 すなわち a <1 のとき m(a)=f(a+2) =(a-1)2-3a+9=d-5a+10 =(a-5)²+ 15 (ii) a ≧3≦a +2 すなわち 1≦a≦3のとき 0=10... m(a) = f(3) = -3a+9 0> (1-0)(+0) a3のとき m(a) = f(a) = a²-9a+18 S = 2 9 9 4 (3)(2)(i)(ii)より,0≦a≦8の 放物線の軸が (i) 区間より右にある (i) 区間内にある () 区間より左にある の3つの場合に分けて考える。 y (i) y=f(x) IS Oa 3 a+2 右の図のようになる。 よって、この範囲でm(α) は 範囲で y=m(a) のグラフをかくと 最大 (ii) 10% y=f(x) y=m(a) 06 α = 0, 8 のとき最大値 10, 9 9 y=4 2 a=- のとき最小値 4 また、グラフより m(α)=4 となる 9% 201 3 8 αの値は (ii), () の範囲にそれぞれ1 つずつ存在し 9 4 a 3 a+2 (iii) i y y=f(x) (ii) 1≦a≦3のとき -3α+9=4 より α = 5 0 3 a X 3 これは, 1 ≦a≦ 3 を満たす。 a+2 (iii) 3<a≤8 D E F STA α2-9a +18=4 より α-9a +14=0 よって (a-2) (a-7)= 0 3 <a ≦ 8 であるから a = 7 5 (ii), (ii)より, α = 3' 7 のとき m(a)=4 となる。

回答募集中 回答数: 0
1/101