学年

質問の種類

数学 高校生

青いマーカーで囲った図や比通りにやったのですが答えが会いません💦 解答の図だと左に外分した線が伸びているので外分する向きが決まっているのでしょうか??

364 基本 例題 64 三角形の角の二等分線と比 0000 (1)/AB=3,BC=4, CA=6 である △ABCにおいて, ∠Aの外角の二等分 線が直線 BC と交わる点をDとする。 線分 BD の長さを求めよ。 (2)AB=4,BC=3, CA = 2 である △ABCにおいて, ∠Aおよびその外角 の二等分線が直線BC と交わる点を, それぞれ D, E とする。 線分 DEの 長さを求めよ。 CHART & SOLUTION 三角形の角の二等分線によってできる線分比 線分比)=(三角形の2辺の比) p.361 基本事項 2 基本 △A C 平 B 4 内角の二等分線による線分比 PSAS 外角の二等分線による線分比 右の図で、いずれも → 外分 BP:PC=AB: AC A 各辺の大小関係を,できるだけ正確に図にかいて考える。 (HM-Ma)=H3 B 解答 に入する。 uts HAS CI 外分するか (1)点Dは辺BC を AB AC に外分するから H3 + HA)#CHU+HA) BD:DC=AB:AC (M8+MA)S="A+A AB: AC=1:2であるから BD:DC=1:2 AB:AC=3:6 よって BD=BC=4 D ■BD DC=1:2 から B C BD:BC=1:1 (2)点Dは辺BC を AB AC に内分するから ゆえに BD:DC=AB:AC=2:1 1 ← AB: AC=4:2 合う、または、 DC=- 2+1×BC=1 -XBC=1る。この点をHとすると また,点Eは辺BC を AB AC に外分するから BE: EC=AB:AC 内 =2:1 ゆえに CE=BC=3 よって DE=DC+CE

未解決 回答数: 0
数学 中学生

間違っていたら答え教えてください明日提出なので😭

■基本問題 15 三角形の角 99 三角形の角〉 三角形で、2つの内角が次の大きさのとき,残りの角の大きさを求めなさい。 また、 その三角形は、鋭角三角形, 直角三角形, 鈍角三角形のどれですか。 80 180 -135 55 45 735 35°. 55° 3 □(2) 40°, 65° □(3) 25° 30° 2 三角形の内角と外角 ①〉 次の図で,の大きさを求めなさい。 1A 180 90 14252 -38142 52° 45° 760 □(2) 180 D □(3) 180 A <x ・74 180 125 x=106 106 55 125° 55 C x=380 3 <三角形の内角と外角 ②> 次の図で, x, y の大きさを求めなさい。 B B 46° 50° C 96 80 100 x=45° (1) 704 -76 910 180 (2) A 180 x=76 61° -176 □(3) 30° D 95 福 DI 104 704 50 x x=300 A65° 85 区 科 コード y=250 85 学 51° X=95% 40° x95 180 通 501 【学法 B -85 502 B 85 95 03 D C 750 C45° 福 B 180 4) (5) y=50 62 16250 A (80 □ (6) (Po 180 77 103 -21° 93_ 887 F 32 y Tos 83 E xC 180 -77-77 703 [桜の 180 E F Bx=33° C △ 45° 33 32 200 40 x=1030 B y C D D x=103 B =740 4 〈平行線と三角形の角〉 次の図で,ℓ//m のとき, x, y の大きさを求めなさい。 y=1430 □1) l D <60° YE □(2) 77° l B I 150 m C 55° 60 B y=1150 76° m x=600 -y D x=760 y=27° □(3) 5 〈いろいろな図形と三角形の角〉 次の図で, xの大きさを求めなさい。 口1) 73 752 125 B52° 40% A Dx125 7=1250 33° □(2) 121° D 66° B ・C x=350 2005 ( 180 m ~18° 43 25° D 737 7=430 y=1370 4 (80 137 C □(3) H SA A <37° 40° G B F ~25° D '20° E 43 コード 601 602 603 学科 604 605 環境 606 を行いま

未解決 回答数: 1
数学 高校生

角ATC=角TSP=角TBSがイコールになる理由を詳しく教えていただきたいです。 接弦定理がよくわかりません。 よろしくお願いします。

日本 例題 図のように、大きい円に小さい円が点Tで接してい まるで小さい円に接する橋線と大きい円との交 点をA,Bとするとき, ∠ATS と ∠BTSが等しい ことを証明せよ。 00000 [神戸女学院大 ] A S /B 399 CHART & THINKING 接線と弦には 接弦定理 p.394 基本事項 2 点Tにおける2つの円の接線と, 補助線 SP (Pは線分AT と小さい円との交点)を引き, 接 弦定理を利用する。 接弦定理を用いて, 結論にある ∠ATS や ∠BTS と等しい角にどんど ん印をつけていき,三角形の角の和の性質に関連付けて証明することを目指そう。 答 点における接線を引き、 図のよう に点Cを定める。 3章 10 円と直線、2つの円 また、線分 AT と小さい円との交点 をPとし,点Sと点Pを結ぶ。 接点Tに対して, 接線 TCは小さい 円, 大きい円の共通接線であるから S B 2円が接する→2円 の共通接線が引ける。 ∠ATC= ∠TSP=∠TBS ① ◆接弦定理 接点Sに対して,接線 AB は小さい円の接線であるから 接弦定理 ∠ASP = ∠ATS ② ATSB において <BTS + <TBS = ∠AST ∠AST = ∠ASP + ∠TSP ここで m _∠BTS + ∠ TBS = ∠ASP + ∠ TSP ③ ①③から ゆえに、②から m <BTS = ∠ASP <BTS = ∠ATS ■(三角形の外角)=(他の 2つの内角の和)

未解決 回答数: 0
1/15