学年

質問の種類

数学 高校生

上と下で問われていることがどう違うのですか?

407 00000 12個のさいころを同時に投げるとき, 少なくとも1個は6の目が出るという事象 | 重要 例 46 確率の基本計算と和事象の確率 000 集まった。 D(R)と 本 43 44 =P(0) を1列 順に受 を4, 出た目の和が偶数となるという事象をBとする。 (1) AまたはBが起こる確率を求めよ。 (2) A,Bのどちらか一方だけが起こる確率を求めよ。 指針 全事象をUとすると, Uは右の図のように、互いに 排反 な4つの事象 A∩B, ANB, ANB, ANB に分けら れる。 (1) P(AUB)=P(A)+P(B)-P(A∩B) を利用。 (2)A,Bのどちらか一方だけが起こるという事象は, AND または ANB (互いに排反)で表される。 基本 43 44 ・U A B A∩BA∩B AB 2 ANB 砕 C (1)Āは,2個とも6以外の目が出るという事象であるか少なくとも・・・ 52 11 には余事象が近道 解答 ら P(A)=1-P(A)=1- 62 36 並び 個とも奇数の場合で P(B)= また、目の和が偶数となるのは, 2個とも偶数または2 32+32 18 検討 指針の図を、次のように 表すこともある。 62 36 レゼン 更に,少なくとも1個は6の目が出て,かつ, 出た目の 和が偶数となる場合には, 二! 通り。 (2, 6), (4, 6), (6, 2), (6, 4), (6, 6) の5通りがあるから P(A∩B)= ント =り 1 30 よって、求める確率は ゼン の P(AUB)=P(A)+P(B)-P(A∩B) = 18 11 + 36 36 受け C2 共 (2) (2)Aだけが起こるという事象は A∩B, B だけが起こる という事象は AnB で表され,この2つの事象は互いに 排反である。 よって、求める確率は P(A∩B)+P(A∩B) ={P(A)-P(A∩B)}+{P(B)-P(A∩B)} AA ANB A∩B ANB 図から,次の等式が成り 立つ。 P(A∩B)=P(A)-P(A∩B), P(A∩B)=P(B)-P(A∩B) また,(2)次の等式を 利用してもよい。 P(A∩B)+P(A∩B) =P(AUB)-P(A∩B) 5 5 -B- B- ANB = 62 36 5 24 2 36 36 3 11 18 JE + -2° 36 36 5 19 36 36 (1)の結果を利用。 練習 ジョーカーを除く1組52枚のトランプから同時に2枚取り出すとき,少なくとも1 ③ 46 枚がハートであるという事象をA, 2枚のマーク (スペード, ハート, ダイヤ, クラ

解決済み 回答数: 1
数学 高校生

❓マークがついているところで、 2b-aとgが〜から、g=1になるところがわかりません。 教えてください。

第4問 整数の性質 【解説】 (1) P 27+31 2n+1 (2n+1)+30_ 2n+1 + 30 2n+1 Pが整数となるのは, 2n+1 が30の約数のときであるから, 2n+1 (nは正の整数) が3以上の奇数であることを考慮すると、 2n+1=3,5, 15. ②x2- 2n+2=26g - 2n+1= ag 22m²+78m+56 R= (n+m)(2n+1) nmは整数であるから,Rが整数のとき、 Q-(n+m)R このときの値は(3)より, も数である よって、 1 = (26-a)g なる。 であり,それぞれのの値に対して, Rの頃は次の表のように 1,2,4,7,22 n= 1 1 n 1 2 4 7 22 (2) 2n+1 a b を用いて、 +1 は、 最大公約数および互いに素な正の整数 とすことができる。 ②x2-(より, [2n+1=0. n+1=bg 2 b-ag= 2b-a とgはともに整数であり, g≧1 であるから, 52 60 R 80 112 276 m+1 m+2 m-+-4 m+7m+22 ... a また, n=1,2,4,7,22のそれぞれの額に対して,m=0 の ときのRの値は次の2のようになる。 2 n 1 2 47 22 R 52 30 20 16° 138 11 g= 2③ したがって,m=0 のとき,Rがとり得る異なる整数値の総和 は、 (3) 22m²+78n+56=(n+1 (22n+56 56-11=45 =(n+1){11(2n+1)+ 45 52+30 +20 +16 118 以下,60 とする. n=1のとき, m +1≧61 より より, 22m² +78n+56 Q= 2n+1 2ntlentli 互いに素だから 割りきれない. (n+1)(11(2n+1)+45} 2n+1 (+1)(1+ 45 2 2n+1 2n+1 =11(n+1)+45(n+1) ここで, (2) より 2n+1 と n+1 の最大公約数は1, すなわち, 21n+1 は互いに素であるから, Qが整数となるのは, 2n+1 が45の約数のときである。 2n+1 が3以上の奇数である ことを考慮すると, すなわち 2n+1=3,5, 9, 15, 45 n=1, 2, 4, 7, 22. よって, Qが整数となるの値は全部で5 個ある。 m+1 <l すなわち <R<1 であるから, Rは整数ではない、 n=2のとき,m+262 より 0<- m+2 であるから, Rは整数ではない. くすなわちくR<1 n4のとき、 80 m+4 が整数となるのは、+4 が 80 の約 のときである+464であることを慮すると、 m+480 すなわちm=76. 7のとき、が整数となるのは、+7 が112の約 数のときである。 767 であることを考慮すると、 m m+7=112 すなわちm=105. n=22 のとき,mmが整数となるのは、+22276(火 約数のときである、+222であることを考慮すると、 -26- -27-

解決済み 回答数: 1
数学 高校生

数Ⅱの微分法の問題です。(3)について右写真の赤線部で、接線の傾きがf'(0)、f(3a/2)になるのは、t²(2t-3a)=0を解いた結果から出てきてると思うのですが、なぜその結果をf'(x)に代入すると傾きが出てくるのかが分からないので教えて欲しいです。

基礎問 96 接線の本数 曲線 Cty=-x上の点をT(t, ピーt) とする. (1) 点Tにおける接線の方程式を求めよ。 (2)点A(a, b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ、ただし,a>0, bキα-a とする. (3)(2)のとき、2本の接線が直交するようなα, bの値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は,接点の個数と一致し ますだから、(1)の接線にA(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 95 注で学習済みです。 (3) 未知数が2つあるので,等式を2つ用意します. 1つは(2)で求めてあるので,あと1つですが,それが「接線が直交する」 を式にしたものです。接線の傾きは接点における微分係数 (34) ですから、 2つの接点における微分係数の積=-1 と考えて式を作ります。 解答 (1) f(x)=x-x とおくと, f'(x)=3x²-1 よって, Tにおける接線は, y-(t-t)=(3t2-1)(x-t) ∴.y=(3t2-1)x-2t 186 (2)(1)の接線はA(a, b) を通るので b=(3t2-1)a-2t3 ―は接点のx座標 が2つでてくるなら、(b)を通る2つの接線の .. 2t-3at2+a+b=0 ...... (*)接点がでてくるということ (*) が異なる2つの実数解をもつので, g(t)=2t-3at2+α+b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, y=x (極大値)×(極小値) = 0 であればよい. (t,t³-t) A(a,b) 95注 g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから

解決済み 回答数: 1
数学 中学生

この問題は箱ひげ図の応用問題なのですが、なぜ初めに累積度数を計算するのでしょうか?

ⓒ P.13 生徒に対し, 国 , 組ごとの国 表したもので テストを行った。 下の表は,組ごとのテスト の得点を度数分布表にまとめたものである。 で比べ 度数(人) 階級(点) 1組 累積 2組 累積 3組 累積 以上 未満 45~ 50 50~ 55 55 60 60 ~ 65 65 70 (70 757 75~80 90100(点) 543 7 7 7 1 | 5 9 12 19 合計 34 23 26 27 26 33 32 32 1 34 33 1 33 33 345136 4616 2 420745133 12 13 3728 185/C して正し びなさい。 170 もっと 点が最も 下の図のア~ウの箱ひげ図は, 1組, 2組,3 組のテストの得点のいずれかを表している。 1組, 2組 3組のテストの得点の箱ひげ図を, ア~ウからそれぞれ選びなさい。 一位範囲 136 ア 四分位 ① いのは 一日太 アルゼンチン ブラジル スイス スペイン ポルトガル メキシコ デンマーク コロンビア 40 45 50 55 60 65 70 75 80点) 中 はじめに 第2四分位数 (中央値)がどの階級にふくま れるかを考える。平 各組で累積度数を計算しておく。 人数 じで ■ 得点が最も低 全 “から、四分位範 3組はデータの個数が33個だから、 データの小さい 方から17番目の値が第 2 四分位数である。 表から,そのデータは65点以上70点未満の階級にふ くまれるから, 3組の箱ひげ図はウとわかる。 は、 この箱ひげ図から読みとれることについて、 下 しょう。 ぶっと 180cmを基準に考えると、日本代表では、身長 である。また、身長が180cm以上の選手が半 ・日本代表より四分位範囲が小さいチームの チームは、およそ半数の選手の身長が中 考えてみようと 小さいのはC組。 次に,第1四分位数がどの階級にふくまれるかを考える。 『分位数はデータを小さい順に 1組はデータの個数が34個だから、 データの小さいる値を表しています。 データ 方から9番目の値が第1四分位数である。 “の平均値として計算するこ 表から、そのデータは50点以上55点未満の階級にふームの選手の数が23人なの一 くまれるから、 1組の箱ひげ図はイとわかる。 気になっています。 ■は等しい。 2組の箱ひげ図は残ったアである。 得点が70点以下 1組 ① ■25%である。 2組 ア れ身長の低 各チームで、 第1四分位数, ウ G

解決済み 回答数: 1
数学 高校生

背理法による証明についての問題です 写真に赤くマークしてあるところについて、なぜ‪√‬5=r-7の形にする必要があるのか分からないため、教えてほしいです。 また、‪√‬5+‪√‬7=rの形のまま証明を進めていくのはダメなのかということも教えてほしいです。

106 基本 例題 61 背理法による証明 1000 7 が無理数であることを用いて, 5 + √7 は無理数であることを証明せよ、 指針無理数である (=有理数でない)ことを直接示すのは困難。 そこで,証明しようとする事柄が成り立たないと仮定して、 矛盾を導き, その事柄が成り立つことを証明する方法, すなわち 背理法で証明する。 実数 p.102 基本 無理数 有理数 直接がだめなら間接で 背理法 CHART 背理法 「でない」,「少なくとも1つ」 の証明に有効 +√7は実数であり √5+√7 が無理数でないと仮定する。 このとき√5+√7 は有理数であるから, rを有理数とし て√5+√7=rとおくと 5=-7の倍数でない」 両辺を2乗して ゆえに ¥0であるから 5=x²-2√7r+7 2√7=2+2 √√√7 = r²+2 2r ...... r2+2,2は有理数であるから,①の右辺も有理数であ 無理数でないと仮定し いるから,有理数であ 2乗して,5を消す (*) 有理数の和・差 は有理数である。 38=d +3=p [1] (1+1)(1+8)=do (*) よって①から√7 は有理数となり 7 が無理数である ことに矛盾する。 縁ではない S+++8)=(S+SE)(1+8) したがって, 5+√7 は無理数である。 矛盾が生じたから 1)+1 √5+√7が無理数 ない」が誤りだった 3+4+)は整数である(+)かる。 [1][2]により、対 この仮定,すなわち, したがって、もとの命も真である 背理法による証明と対偶による証明の違い 目 30+=+= [] 命題pg について、 背理法では 「pであって」でない」 (命題が成り立たない)とし 討 盾を導くが,結論の 「g でない」に対する矛盾でも、仮定の 「である」 に対する矛盾 どちらでもよい。 後者の場合,「刀」つまり対偶が真であることを示したことに このように考えると, 背理法による証明と対偶による証明は似ているように感じられ 本質的には異なるものである。 対偶による証明は引 る段階で道

解決済み 回答数: 1
1/439