学年

質問の種類

数学 高校生

どうやってy=9.3xのグラフを書くのですか? x=−2でy=1となる計算の仕方を教えてください。 (1)

次の関数のグラフをかけ。 また, 関数 y=3のグラフとの位置関係をいえ。 Bay ooooc (2)y=3x+1 (1) y=9.3x (3) y=3-9% 指針y=3* のグラフの平行移動・対称移動を考える。 y=f(x) のグラフに対して 解答 y=f(x-b)+α y = -f(x) (3) 底を3にする。 y=f(-x) y=-f(-x) _1) y=9・3*=32.3x=3x+2 したがって, y=9・3のグラフは, y=3のグラフをx軸方向に2だけ平行移動したもので ある。よって, そのグラフは下図 (1) -)y=3x+1=3(x-1) y=3xのグラフをx軸方向に1だけ平行移動したもの, す したがって, y=3x+1のグラフは2個 なわちy=3* のグラフを軸に関して対称移動し、更に 軸方向に1だけ平行移動したものである。 よって,そのグラフは下図 (2) x y=3-9² = − (3²) ²+3=3*3²8 y=9.3* x軸方向にか、y軸方向にだけ平行移動したもの x軸に関して y=f(x)のグラフと対称 軸に関して y=f(x)のグラフと対称 原点に関して y=f(x)のグラフと対称 したがって, y=3-9 のグラフは 3" のグラフ (*) をy軸方向に3だけ平行移動したもの, YA y=3x 9 -2 -2 234 (*)y=-3* と ラフはx軸に すなわちy=3*のグラフをx軸に関して対称移動し、更にyx軸との交点 - 3*+3=0t 軸方向に3だけ平行移動したものである。 hy よってx= よって, そのグラフは下図 (3) Zkum (2) y=3x+1 +1¹ 22 B + s ( 14 Pl Ay ly=3 13 -y=3x+1 p.260 基本事項 [1 +1 注意 (1) y=3のグ y軸方向に9倍した もある。 (3) y=3xとy=3* はy軸に関して +3 YA +3 17 13 12 0 y=3* y=3-9 +3

回答募集中 回答数: 0
数学 高校生

ともに答えは合っていますが、導き方に問題はないですか?

基本例題 73 2次関数のグラフの平行移動 (2) (1) 2次関数y=2x2+6x+7 y=2x²-4x+1 (2) x軸方向に1, y 軸方向に-2だけ平行移動すると, 放物線 C:y=2x2+8x+9 に移されるような放物線C の方程式は y=2x2+7x+1 である。 ****** 指針 (1) 頂点の移動に注目して考えるとよい。 ①のグラフは, 2次関数 ②のグラフをどのように平行移動したものか。 まず, ①, ② それぞれを基本形に直し 頂点の座標を調べる。 解答 (1) ① を変形すると (2) 放物線Cは, 放物線 C1 を与えられた平行移動の逆向きに平行移動したものである。 p.115 基本事項 ③3 ② を利用。 5 y=2(x + ²)² + 2/ 点 *(-2/ , /2/2) ① ① の頂点は ② を変形すると ② の頂点は 点 (1,-1) ②のグラフをx軸方向にか, y 軸方向 にgだけ平行移動したとき, ①のグラフに重なるとすると ゆえに=-- 5 5 1+p=-2²₁ −1+q=2/2/2 29=2 よって,①のグラフは,②のグラフを 軸方向に y軸方向に 22 だけ平行移動したもの。 5 2' 0 y=2(x-1)^-1が (2) 放物線Cは,放物線C をx軸方向に -1,y 軸方向に 2 だけ平行移動したもので, その方程式は y-2=2(x+1)^+8(x+1)+9 x y=2(x+3)^+3=2x2+712x+イ21 (*) したがって y=2x2+P12x+121 別解 放物線C の方程式を変形すると y=2(x+2)+1 よって,放物線 C1 の頂点は点 (-2, 1) であるから, 放物線 Cの頂点は(-2-11+2) すなわち点(-3, 3) ゆえに, 放物線C の方程式は 00000 ① : 2x²+6x+7 =2(x²+3x)+7 -2-(-²)* +7 ② : 2x²-4x+1 =2(x2-2x)+1 C: =2(x²-2x+12)-2・12+1 (*) 頂点の座標の違いを見て, 3 55 -2-1---2,2-(-1)=2/2 2' としてもよい。 基本72 x 軸方向に1, y軸方向に-2 x軸方向に1, y軸方向に2 : Ci yy-2 →x- (-1), とおき換え。 頂点の移動に着目した解法。 ....... 平行移動しても²の係数 は変わらない。 121 3章 2次関数のグラフとその移動

回答募集中 回答数: 0
数学 高校生

答え方の質問です。例題75はy=-2(x+2)-1と答えているのに対して例題76はy=2x²+12x+21と答えなければいけないのはなぜですか??

に凸 b 2a C -x²+bx- x+ 20 2-4ac 4a AとB 同符号 AとB 異符号 とx軸 点で交 -4ac とがで p.175 基本例題 75 2次関数のグラフの平行移動 (1) 00000 放物線y=-2x2+4x-4をx軸方向に3,y軸方向に1だけ平行移動して得ら れる放物線の方程式を求めよ。 p.124 基本事項 3 指針 次の2通りの解き方がある。 解答 解法 1. p.124 基本事項 3② を利用して解く。 放物線y=ax²+bx+c (*)をx軸方向に●,y 軸方向に■だけ平行移動 して得られる放物線の方程式は ****** y=a(x-' +6 (x)+c←(*) でxをx 解法2. 頂点の移動に注目して解く。 ① 放物線の方程式を基本形に直し, 頂点の座標を調べる。 ② 3 y 軸方向に1だけ移動した点の座標を調べる。 頂点をx軸方向に-3, ②2 で調べた座標 (p, g) なら, 移動後の放物線の方程式は y=-2(x-p)^+α 解法 1. 放物線y=-2x2+4x-4のxをx- (-3),yをx_(-3), y_1 y-1におき換えると 符号に注意。 よって, 求める放物線の方程式は 解法2.2x2+4x-4 すなわち ,yを口に おき換える。 c (定数項) はそのまま。 y-1=-2{x-(-3)}^+4{x-(-3)}}-4 =-2(x2-2x+1)+2・12-4 平行移動してもx2の係数は変わらない。 y=-2x²-8x-9 (1-3, -2+1) =-2(x-1)2-2 よって, 放物線y=-2x2+4x-4 の頂点は 点 (1,-2) 平行移動により,この点は 点(1-3, -2+1) すなわち点(-2,-1) に移るから 求める放物線の方程式は y=-2{x-(-2)}^-1 y=-2(x+2)^-1 y=-2x²-8x-9 でもよい) -3 0 x (1,-2) y=-2x2+4x-4 平方完成 部分の符号に注意! 点 (1+3, -2-1) は誤 り。 12

回答募集中 回答数: 0
数学 高校生

(2)の問題です。 X軸方向に1だけ進むのがどうしてかわかりません。 -x+1と書いてあるから-1だけ進むと思ったのですが… 解説お願いします!

次の関数のグラフをかけ。 また,関数 y=3* のグラフとの位置関係をいえ。 (1) y=9・3x .(E) (2) A(2)y=3x+1 (3) y=3-92 指針y=3* のグラフの平行移動・対称移動を考える。 y=f(x) のグラフに対して O t x軸方向にか,y 軸方向に gだけ平行移動したもの x 軸に関して y=f(x)のグラフと対称 y軸に関して y=f(x)のグラフと対称> 原点に関して y=f(x)のグラフと対称 y=f(x-p)+α y=-f(x) y=f(-x) y=-f(-x) (3) 底を3にする。 解答 (1) y=93x=32.3x=3x+2 したがって, y=9・3% のグラフは, 2x >__> $5.00 もある。 y=3" のグラフをx軸方向に-2だけ平行移動したもので ある。よって, そのグラフは下図 (1) (2)y=3x+1=3-(x-1) したがって, y=3x+1のグラフは, y=3xのグラフをx軸方向に1だけ平行移動したもの, す なわちy=3" のグラフを軸に関して対称移動し、更にx 軸方向に1だけ平行移動したものである。 よって、そのグラフは下図 (2) YA x y=3x -2 (3) y=3-9.2 (32) +3=-3" +3 したがって,v=3-9 12 のグラフは, (*)y=-3*とy=3*のグ ラフはx軸に関して対称。 y=-3% のグラフ (*)をy 軸方向に3だけ平行移動したもの, すなわちy=3のグラフをx軸に関して対称移動し、更にyx軸との交点のx座標は、 軸方向に3だけ平行移動したものである - 3x+3=0から3=31 よって、そのグラフは下図 (3) (2) y=3x+1| +1+ 13 ly=3* y=3x+1 鄭出小木③歷乗県(TSIAHO <y=3xとy=3のグラフ はy軸に関して対称。 CERED よってx=1 最場合) 1/1/22 (3) ly=3x 7/1/1) +15) > 注意 (1)=3 のグラフを y軸方向に9倍したもので +3 p.260 基本事項 ① - y +3 13 2 O y=3-9 1 +3 x e>8>a sak

回答募集中 回答数: 0
数学 高校生

(3)の位置関係がよく分かりません 詳しく教えてください

次の関数のグラフをかけ。また,関数 y=log4x のグラフとの位置関係をいえ。 指針> y=log4xのグラフの平行移動 対称移動を考える。p.p61 の基本例題 165同様, y=f(x) 274 OO000 基本 例題174 対数関数のグラフ (1) y=log.(x+3) (2) y=log}x / (3)ソ=log.(4x-8) p.273 基本事項 I, 基本 165 のグラフに対して次が成り立つことを利用する。 *軸方向にp, y 軸方向にqだけ平行移動したもの *軸に関してy=f(+)のグラフと対称 y軸に関してy=f(+) のグラフと対称 原点に関してy=f(x)のグラフと対称 y=f(xーp)+q y=ーf(x) y=f(-x) y=ーf(-x) 1072 (2) 底の変換公式を利用して, 底を4にする。 (3) 4x-8=4(x-2) である。対数の性質を利用して, 右辺を分解する。 解答 (1) y=log.(x+3)=loga{x-(-3)} したがって, y=log4(x+3) のグラフは, y=log.xのグラフをx軸方向に -3だけ平行移動したもの である。よって,そのグラフは下図(1) 4x軸との交点のx座標は (真数)=1とすると, x+3=1から x=-2 (2) y=log,x= log4x log4x log.b 1logab= log.a 1 log, 4-1ーlog4x log4 4 したがって, y=log}x のグラフは, y=log.x のグラフをx軸に関して対称に移動したもの である。よって,そのグラフは 下図(2) (3) y=log』(4x-8)=log44(x-2)=log.(x-2)+1 したがって, y=log.(4x-8)のグラフは, y=logxのグラフをx軸方向に2, y軸方向に1だけ平行 移動したもの である。よって, そのグラフは 下図 (3) (1oga MN=log.M+log.N" x軸との交点のx座根は、 4x-8=1から x=テ y=log,(x+3) log.3 (2) yイ (3) YA y=log (4r-8) ソ=log4x 2 2 1 1 -3 16 +1 13 x x 0 2 3 6 -1 -3 y=logx y=logar -2 4 y=log}x 練習 次の関数のグラフをかけ。また 開数=om

回答募集中 回答数: 0
1/3