学年

質問の種類

地学 高校生

地学基礎の質問です! (1)の解き方を分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

7. 地球の形と大きさ 次の文章を読み, 下の各問いに答えよ。 古代ギリシャでは地球が丸い(球形である)ことが知られており, 実際にその大きさを測 定するものまで現れた。 はじめて地球の大きさを見積もったのは, 紀元前3世紀頃に活躍 したエラトステネスである。 彼は,現在のエジプト南部にあった都市シエネで夏至にちょ うど太陽が真上に来ること,シエネのほぼ真北にあるアレクサンドリアにおいて夏至の太 陽の南中時の高度が約82.8度であること, 両都市の間は約5000 スタジア (約925km) であ ることから, 地球の大きさを概算することに成功した。 (1) 地球を球とみなすと, シエネおよびアレクサンドリアの緯度はそれぞれ何度か。 なお, この時代の自転軸の傾きは23.7度とする。 1 7.2 南北 ② 23.7日 ③ 30.9 地 ④ 59.1 ⑤ 82.8 J (1) (2) 地球を球とみなすと, エラトステネスの計算では,地球の外周は約何kmになるか。 (1 38000 km ② 40000km の各③ 42000km ④ 44000km (5 46000 km (3) 実際の地球は、 自転軸方向につぶれた回転楕円体に近い形をしている。 地球を下の図 の大きさに縮小した場合, 地球の形に近いものを1つ選べ。 ① ② ③ (S)

回答募集中 回答数: 0
物理 高校生

物理基礎の問題です! 類題の(1)を分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

例題② 等速直線運動と等加速度直線運動 図のように, 小球Aはx軸上を正の向き t=0s に5.0m/sの速さで等速直線運動をし,時 刻 t=0s に原点を通過する。 また, 原 点にあった小球Bは, 時刻 t=0s から 初速度0で等加速度直線運動を始め、 A5.0m/s B x [m] 5.0m/s t=10s t=10s のとき,x軸の正の向きに 5.0m/sの速さであった。 次の問いに答えよ (1) A, B の運動を表すv-tグラフをそれぞれ描け。 (2) t=10s での, A,Bの位置をそれぞれ求めよ。 (3) BがAに追いつく時刻と,そのときの位置を求めよ。 指針 (1) 等速直線運動, 等加速度直線運動のv-tグラフの特徴に着目する。 (2)等加速度直線運動の式を利用してBの加速度を求め, さらに式を用いて A, Bの位置を求める。 (3) A, B の位置をそれぞれ式で表して, 一致する時刻を求める。 解 (1) A, B のひtグラフはそれぞれ t軸に平行な直線と原点を通る直線である。 (2)時刻でのA,Bの位置をそれぞれ [m/s] IA, IB とする。 Aは等速直線運動を するので式(4)より, 0.50 t …① B x=5.0m/sxt Bの加速度をαとすると, 式 (8) より, 5.0m/s =0m/s+α×10s よって a=0.50m/s2 式(9) より, 1 Ip=0m/sxt+1/x0.50m/s2x t2 2 t=10s をそれぞれ式①、②に代入して, 5.0 A 0 t t(s) I=5.0m/s×10s=50m,xp=1 - ×0.50m/s2x (10s)=25m (3) A=IB となるときなので,時刻をtとして,式①、②より, 5.0m/sxt=0m/sxt+1/2 ×0.50m/s2x t よって, t=20s このときのA,Bの位置は,式① (式②でもよい)にt=20s を代入して, 5.0m/s×20s=1.0×102m 類題 2 例題②の小球 A,Bの運動について,次の問いに答えよ。 Os≦t≦20s の間で,AとBとの間の距離が最も大きくなるのはいつか。 (2) A, B の運動を表す x-tグラフをそれぞれ描け。

回答募集中 回答数: 0
数学 高校生

数2の質問です! 172のsinθ、cosθ=0 の時に どのようにしてといているのかを 分かりやすく説明してほしいです!! よろしくおねがいします🙇🏻‍♀️՞

テーマ 40円 千乃の 円奴の他 = 1/3 のとき, cos2a, sin a cos- <α<л, sinα= 2 え方 解答 の値を求めよ。 (4) cos2α を求めるには, sina, cosαのいずれかの値がわかればよい。 sin 2 を求めるには, sinα, cosαの両方の値が必要である。 2 cos2a=1-2sinq=1-2×(1/3) - 7 25 <α <πであるから cosa<0 1- 3-5 2 よって cosα=-√1-sin'α=- したがって sin2a=2sinacosa=2x- 2× ×(-3)=-24 25 sin a 2 1/4であるから よって sin√√ 13 172(1) 左辺を変形すると 整理すると よって sincos したがって、ソは sin >0 5 3" =1/3で最大値2.x 2 √13 をとる。 あるから Ry=2sin(x+1/x) (0≦x y=2sinx (0≦x<2m) gだけ平行移動し 下の図の実線部分のよ sin sin 0 (2cos 0-1)=0 a COS 2. 2 1+cosa 2 5 a <であるから COS ->0 4 2 2 よってco8/1/2=1/15 √5 a COS 12 □ 練習 171 0<a< で, sina=- 13 そのとき,次の値を求めよ。 (1) cos 2a (2) sin2a a (3) cos (4) sin 2 答 第4章:三角関数 sin0=0 または cost=- 002 のとき,! sin0=0から - coso=1から 10=0,π y1 12 Jar + 0 = 5 2 3' 3 6 5 したがって 0=0, 3π, (2) 左辺を変形すると 74 2sinx+3cos 整理すると 左辺を因数分解すると (2cos20-1)-3cos0-1 = 0 sin a= 2cos20-3cos 0-2=0 ただし 3 √13 (cos 0-2)(2cos 0 +1)=0 0≦x<2 より 72 cos であるから よって cose-2 よって 2cos +1=0 したがって 166 すなわち cos 0=-- 175(1) 左辺 応用 2 10号 2-3 テーマ 78 2倍角の公式と方程式 0≦02 のとき, 方程式 sin20=√3cose を解け。 考え方 2倍角の公式を利用して, 方程式を AB=0 の形にする。 解答 左辺を変形すると 173 √ 2sincos0=√3cose ←共通の式 cosが現れる。 から 整理すると cos (2sin0-√3)=0 よって cos0=0または sin0= 2 002のとき, から cos00から π 0=- 2'2 したがって 0=- π π, 3 2' [練習 172 3|22|3 22 √ π 2 ・π sin0= -から=1 2 3' 3" よって 32 笑 πC 002のとき, 次の方程式を解け。 (1) sin20=sin0 (2) cos 20-3cos0-1=0 002の範囲で解くと10 5 x+1)である −V3sin x+cosx=2sin x+ y=2sinx+ 51-1 5 17 xx+1である 5 -15 sin(x+7) Sl -2≤y≤2 また,sin(x+1)--1のとき 5 3 T= TC ゆえに x=ga sin(x+1)=1のとき 0nie 5 +5 x+ = 6 5 ゆえに x=g 複数の上 よって 0≤x< この範 した (2) 2

回答募集中 回答数: 0
生物 高校生

生物基礎の質問です! 7.8番の求め方を 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

植生の調査 (方形区法) ある植生において,各植物が地表のどれだけの割合をおおっているかを百分率あ るいは等級で示したものを被度という。また、調査した全区画のうち、その植物が どれだけの割合の区画で出現したかを示したものを頻度という。植生の調査は, 般に植生内に調査区をいくつか設けて、その中に生育している植物の種類とその被 度や頻度を調べることによって行われる。 ① 調査しようと思う植生に一定の大きさの方形区 (調査区) を数か所設ける。一般 に方形区の大きさは,校庭や草地では50.cmか1 ]m四方, 森林なら10m 四方とすることが多い。 方形区ごとに生えている植物の種類を調べ,種ごとに被度と頻度を求める。被 度は,おおっている面積の割合をもとに次のような被度記号を使って表す。 1 1 1 11 2: 4 2' 1': 100 20' +: 未満 100 ③ 平均被度(調査した全方形区に対する被度記号の数値の平均) を計算する (1' は 0.2 +0.04 として計算する)。下表のシロツメクサの平均被度を求めると 1 + 3 + 1 +2 +4 +3 13 3 4:一以上,3:ー~ 4 24 被度%... = [2 ] 8 ④ 平均被度が最大のもの(下表の場合はシロツメクサ)の被度%を100とし、それ を基準にして他の植物の被度%を求める。 同様に,頻度(全方形区に対して各植 物が生えている区の割合) が最大のものの頻度%を100とし、他の植物の頻度% を求める。下表のオオバコの場合,被度%と頻度%を整数値で求めると, 30.63 [2 tek 3 ] ] (%) 頻度・・・ x 100 = [4 〕 (%) STEHE 6 ⑤ 被度%と頻度%を平均した値を優占度といい, この値が最大の植物種を優占種 とする。 ⑥ したがって、下表の植生の優占種は [5 Jord x 100 = [3 I Ⅱ Ⅲ Ⅳ V VI VⅡII ⅦⅢI 平均被度 1 1-24 3 co T T L T 2 1 シロツメクサ オオバコ セイヨウタンポポ 1 14 +1' [8 0.28 ニワホコリ 42 注) 植生の調査法には,被度記号の表し方などに上記以外の方法もあるので,問題では,与 えられた方法にしたがって考えることが必要である。 - 1 - T 1 1 1:~-, 20 4 T T T T 用具】 となる。 1 1 12 ] 100 [3 2 20.63 被度% 頻度 100 [6 ] 1 12 1.75 336 450 5 シロツメクサ 60.25 7 24 8 16 ] [4 優占度 100 ] 43 [7 33 ] 67 第4章 生物の多様性と生態系 ]

回答募集中 回答数: 0
数学 高校生

数2の質問です! 123の(3)を教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

第3章 図形と方程式 2つの円の交点を通る図形 テーマ 55 2つの円の交点を通る図形 2つの円x2+y²-6x4y+12=0 ・・・ ①, x2+y²-2x-2y=0 について、次の問いに答えよ。 (1) 2つの円 ①. ② は2点で交わることを示せ。 56 (2) 2つの円①, ② の2つの交点と点 (4, 0) を通る円の方程式を求めよ。 (1)半径がそれぞれR, (R>r) である2つの円の中心間の距離をdとすると 2つの円が2点で交わるR-r<d<R+r (2) 方程式 (x2+y²-6x-4y+12)+k(x+y-2x-2y)=0の表す図形は k-1のとき2つの円の2つの交点を通る円 k=-1のとき 2つの円の2つの交点を通る直線 解答 (1) ① を変形すると (x-3)+(y-2)=1 よって, 円 ① の中心は点 (3, 2), 半径は 1である。 (x-1)+(y-1)=2 ② を変形すると よって, 円 ② の中心は点 (1, 1), 半径は √2である。 2つの円 ①,②の中心間の距離は d=√(3-1)+(2-1)'=√5 ② 半径√2 図形 ③点 (40) を通るとき これを③に代入して整理すると これが求める円の方程式である。 応用 2 (1,1) ① 半径1 (3,2) DALLA ゆえに √2-1<d<√2+1 したがって、 2つの円 ①, ② は2点で交わる。 終 (2) kを定数として, 方程式 (x2+y²-6x-4y+12)+k(x2+y²-2x-2y)=0 ③ を考える。 (1) により、2つの円 ①,②は2点で交わり、③は2つの円 ①,②の 2つの交点を通る図形を表す。 1 4+8k=0> よって k=-- x2+y²-10x-6y+24= 0 2 ①, x2+y2=4 (2 123 2つの円x2+y²-8x-4y+4=0 ついて,次の問いに答えよ。 2つの円 ①,②は2点で交わることを示せ。 2つの円①② の2つの交点と点 (1,1)を通る円の方程式を求めよ。 2つの円 ①,②の2つの交点を通る直線の方程式を求めよ。 28 基本と演習テーマ 数学ⅡI 122 (1) 円+y=18は中 心が原点, 半径が3√2の 円である。 2つの円の中心間の距離d は d=√12+(-7) =√50=5√2 2つの円が外接するとき 求める円の半径を 5√2=r+3√2 とすると これを解くと=2√2 よって, 求める円の方程式は (x-1)²+(y-(-7))^²=(√2)^ すなわち (x-1)²+(y+7)²=8 (2) x2+y²-12.x +4y+390 を変形すると (x-6)^+(y+2)=1 110 ...... 114 これは,中心が点 -7 123 (1) ① を変形すると (x-4)²+(y-2)² 44) (x-3)²+(y-2)² = 6² すなわち (x-3)^+(y-2)^²=36 (6, -2), 半径が1の円 を表す。( 2つの円の中心間の距離 dは 前 d=√(3-6)^2+(2-(-2))=√25=5 2つの円が内接するとき 求める円の半径を とすると, 図より 5=y-1 これを解くとv=6 よって, 求める円の方程式は y1 2 O =16 よって, 円 ① の中 ② 半径2 心は点 (4,2), 半径 は4である。 円 ② の中心は 点 (0, 0), 半径は2である。 円 ①,②の中心間の距離は + x -2 6 O ① 半径4 d. (4,2) x 形 ③点 (1,1)を通るとき 月①,②の2つの交点を図形を表 -6-2k=0 x2+y2+4x+2y-80 これが求める円の方程式である。 (3) ③ において, k=1 とすると -8x-4y+8= 2x+y20 124 (1) 求める軌跡は, 直線y=1からの距離 が2で、 直線y=1と 平行な2直線である。 よって 直線y=3, 直線y=-1 (2) 求める軌跡は,線分 ABの垂直二等分線で ある。 よって pold=√42+22=√2=2√5 4−2<d<4+2であるから, 円 ①,②は2点 で交わる。 (2) kを定数として, 方程式 よってk=3 これを③に代入して整理すると (x2+y2-8x-4y+4)+k(x²+y²-4) = 0 ...... (3) を考える。 (1) により, 円 ①, ② は2点で交わり, ③は すなわち これが求める直線の方程式である。 直線 x=2 (3) 求める軌跡は, *+(y-2)=16 点 (1,2)を中心とする 半径3の円である P (2) AP¹=x-(-3)= BP=(x-3)² + AP' + BP=20で (x+3)²+y = 整理すると したがって、点 逆に、この円上 て, AP3 + BP- よって 求め 原点を (3) A.P'=x- BP2=(x- AP2-BP2- 0 AB (1,2) (x+ 整理すると したがって 逆にこ いて, A よって, 126PC とする。 Pに関す AE 125 点Pの座標を(x,y)とする (1) AP2=(x-2)^2+y2, BP2=x2+(y-6° AP=BP より, AP2=BP2であるから (x-2)2+y2=x2+(y-6)²2 これよ すなわ AP2= BP2= B = す し あ 3 整理すると x-3y+8=0 したがって, 点Pは直線x-3y+8= 0 上にあ る。 逆に,この直線上のすべての点P(x,y) につ いて, AP BP が成り立つ。 よって, 求める軌跡は 直線x-3y+8=1|

回答募集中 回答数: 0
1/21