学年

質問の種類

数学 高校生

この問題の(2)の解答の(i)のところのやり方が違ったので、合ってるかみてほしいです!また、私のやり方が合ってたとしても解答の解法が1番すっきりしてて良いと思うのですが、どうしたら私のでなく解答の解法が思いつきますか?

y= 9 が有理数となって矛盾することか らわかります。これを利用するには、与式を無理数を含む部分と含まない (x) 部分に分けます。 0xy平面の2直線のなす角をとらえるには, 傾きとtan の加法定理を利用します。 まず, tan の定義を思いだしておきましょう. 座標平面で 点A(1.0) が原点を中心に角だけ回転し点 P(x, y) になるとき (動径 OP の角が という Ay P ですから、否定的にしか表現で 麺の証明は -C (否定 「〜でない」ことが簡単に背定で表現できないことが . x+2y-2-(x+2)√3 0 ことが多く、青 xyは整数(有理数)では無理数だから 理法によるのが普通です. したがって,「無理数であることの証明は、 有理 数であると仮定して矛盾を導く」 方針をとります. 無理数についての問題を解くには次のことをよく用います。 「αが無理数 p q が有理数のとき p+ga=0⇒p=9=0」 これは90と仮定すると,α=P x+2y-2=x+2=0 ..(x,y)(22) (2)(i).mがいずれもy軸でないときを考える。このとき、この傾きを Pとし,Iが通る原点以外の格子点を(a, b) とすると,a0 で b P= (有理数) a である.同様にして,m の傾きをqとするとgは有理数である。 lm のなす角が60°であると仮定する。 このとき1.mx軸の正方向 からの回転角をそれぞれα,βとし、β-α=60°としてよい。 すると tano = p, tanβ=q であり, 8 tan (β-α)=tan 60° tan β tan or 1 + tan βtan r = √√√3 O 9-P 1+gp = √3 ① こと)。 tan6=2=(OPの傾き x だから傾きとは tan なのです. またこれからtan (0+π) tan もわかり ます。 1. は直交しない (60° をなす)のでpgキー1であり, ①の左辺は、 分子分 母ともに有理数だから有理数であり, が無理数であることに反する. (またはmy軸のとき、 1.m のなす角が60° であると仮定すると, tan 30°= により、他方の直線は y= この直線が通る xとなり, 原点を通る直線1, 2 があり、 傾きをそれ ぞれm1, m2 とします.x軸の正方向 からの回転角をそれぞれ 01, 02 とすると, 4 か らんへ回る角はB2-01 で 原点以外の格子点を (c.d) とするとd ¥0でV3 = となり,vが無 理数であることに反する. A 以上から題意が示された. (フォローアップ) tanf=tan (02-01)= tan ₂-tan 01 1 + tan O2 tan 01 = m2-m 1+m2m1 (ただしmm2 キ-1) 1. 一般に,xy 平面の2直線のなす角の公式は次のようになります 「xy 平面において交わる2直線y=mx+m,y=m2x+n2 のなす角を (001)とすると, 解答 (1) 直線が通る格子点を (x, y) とすると, x+1+√3 . y= yo-x+1+v 2 mm2-1 ならば mm2 キ-1ならばtan0= my-m2 1+m1m2 50 39-6 有理数 無理数, 2直線のなす角 6 座標平面上で,x座標, y 座標がともに整数である点を格子点と いう. 次の問いに答えよ. ただし, √が無理数であることを証明な しに用いてもよい. 1 (1) 直線 y=- x+1+√3が通る格子点をすべて求めよ. [山口大〕 以外にも格子点を通るとき, 1, m のなす角は, 60°にならないこと (2) 原点を通る2直線1, mについて考える. 1, m がそれぞれ原点 を証明せよ. PICCOLLAGE (イ)「有理数とは整数 p, q (0) と表される数」のことです(ここで 約分して約分数にしておくことも多い) これはいいですね。 具体 アプロチ

解決済み 回答数: 1
物理 大学生・専門学校生・社会人

107番についてです (2)まで正解です (3)以降で自分が書いてることのうち何を間違えているのか指摘してほしいです 習っている先生が合成容量を使わない方針なので、その方針で指摘していただけると助かります

72 た。極板間の電場,電位差,静電エネルギーはそれぞれ何倍になるか。 (センター試験 + 福岡大) XX (4)(3)に続いて、極板と同形で厚さd.比誘電率2の誘電体を極板間に 入れた。 極板間の電位差 V, を Vo で表せ。X 3/16 100 間隔 だけ離れた極板 A,Bからなる電気容 4305/1 量Cの平行板コンデンサー, 起電力 V の電池と スイッチSからなる図1のような回路がある。 まず, スイッチSを閉じた。 A V B 図1 ○○(1) コンデンサーに蓄えられた電気量はいくらか。 (2) このときの極板Aから極板Bまでの電位の 次に,スイッチSは閉じたまま、厚さの金 属板Pを図2のように極板 A, B に平行に極板 間の中央に挿入した。 A V P B 図2 変化の様子を極板Aからの距離を横軸としてグラフに描け。 (3)また,このとき極板Aに蓄えられた電気量はいくらか。 (4)さらに,スイッチSを開いた後,金属板Pを取り去った。このと きの極板間の電位差 V' ばいくらか。 メト (5) Pを取り去るときに外力のした仕事 Wはいくらか。 6/19 X(3) C, にかかる電圧はいくらか。 _X (4) C2 に蓄えられる電気量はいくらか。 × (5) 抵抗Rで発生したジュール熱はいくらか。 108 起電力が V で内部抵抗の無視できる電池 E, 電気容量がCの平行板コンデンサーC, 抵抗値Rの抵抗R, およびスイッチSを接続 した回路がある。 G点は接地されており,そ の電位は0である。 はじめSは開いており, コンデンサーに電荷は蓄えられていない。 E 電磁気 73 (京都産大) R (a) まずSを閉じ, Cを充電する。 Sを閉じた瞬間に抵抗Rを流れる 電流は(1)である。 (b)Sを閉じてから十分に時間がたったとき,Cに蓄えられている静電 エネルギーは (2) である。またこの充電の過程で電池がした仕事 は(3)であり、抵抗Rで発生したジュール熱は(4)である。 (c)次に(b)の状態からSを開いた。最初Cの極板間隔はdであったが、 極板を平行に保ったままゆっくりと2dに広げた。このときA点の である。 また極板を広げるのに必要な仕事は(6) とされる。 電位は (5) であり,極板間に働く静電気力の大きさ(一定と考えてよい)は (7) (近畿大 + 防衛大) (愛知工大 + 静岡大) R S2 109 極板 A,Bからなるコンデンサーがあり [電荷 Q [C] が充電されている。 極板は一辺の長 さが〔m〕の正方形で,極板間隔はd[m] であ ある。 極板間は真空で, 電場 (電界) は一様とし、 真空の誘電率を co〔F/m〕 とする。 [+] [Q] -Q 図 1 +Q A 107 図はコンデンサー Ci, C2, C3 (電気 容量はそれぞれ C, 2C,3C) 電池 (起 電力V) およびスイッチ S. S2と抵抗R からなる回路である。 最初, スイッチは どちらも開いており、いずれのコンデン サーにも電荷はない。 I. まず, スイッチを閉じ, C, と C2 とを充電した。 _ (1) C, に蓄えられる電気量はいくらか。 (2) C2 にかかる電圧はいくらか。 Ⅱ.次にS」を開いてから,S2を閉じ、十分に時間がたった。 A,B間に, 図2のように誘電体を挿入する。 誘電体は一辺1 [m] の正方形で,厚さd[m] 比誘電率 e, である。 誘電体をx [m]だけ挿入し たとき, 誘電体部分の電気容量は (1) (F) であり,真空部分の電気容量は (2) [F]だ から,全体での電気容量は(3) [F] となる。 x -Q 図2 2.

未解決 回答数: 1
数学 高校生

例題13を用いて119番をやるのですが答えを見てもわかりません

第2章 集合と命題 113 n は自然数とする。 次の命題の裏を述べよ。 p.76 (1) 四角形 ABCDが長方形ならば, 四角形 ABCD は平行四辺形である、 (2) n2 が奇数⇒nが奇数 *114 n は整数, a, b は実数とする。 次の命題を証明せよ。 (1) n2+1が奇数ならば, nは偶数である。 (2)2a+360 ならばα > 0 または6>0である。 p.77 *115が無理数であることを用いて、次の数が無理数であることを証明せよ (1) 2-√√2 B問題 116 背理法を利用して,次のことを証明せよ。ただし,a>0 とする。 (1) αが無理数ならば, α は無理数である。 (2)が無理数ならば √3-√2 は無理数である。 *117 (1) n は整数とする。 次の命題を証明せよ。 ☑ n2が3の倍数ならば, nは3の倍数である。 p. 78 9 (2)背理法を利用して,3が無理数であることを証明せよ。教p.79 例題 無理数と有理数 a,bは有理数とする。 3 が無理数であることを用いて,次の命題 13 を証明せよ。 第2章 集合と命題 39 118 a, b は有理数とする。 6 が無理数であることを用いて,次の命題を証明 ☑ せよ。 √2+√36=0a=b=0 *119 次の等式を満たす有理数 g の値を 例題13の結果を用いて求めよ。 (1)(3+√3)-(2-√3) g+1-4v3=0 (2) √3-1+3=1 発展〉 「すべて」 と 「ある」 の否定 命題とその否定 命題とその否定について, 次のことが成り立つ。 pはxに関する条件とする。 命題「すべてのxについて」の否定は「あるxについて 命題「ある x につい否定 「すべてのxについて 問題 ある CONNECT 6 「すべて」 と 「ある」 の否定 次の命題の否定を述べ, もとの命題とその否定の真偽を調べよ。 (1) すべての素数nについて, n は奇数である。 (2) ある実数xについて x2≦0 a+b√3=0a=b=0 この命題は直接証明することが難しい。 よって、背理法を利用して証明する。 まず, b=0 と仮定する。 b よって 解答 6≠0 と仮定すると √3=- a b a は有理数であるから,この等式は、が無理数であることに矛盾する。 b=0 b=0のとき a030から a=0 したがって, 命題は真である。 【?】 a+bv3=0を 考え方 「すべて」 と 「ある」 を入れ替えて結論を否定する。 命題とその否定では,真 偽が逆になる。 解答 (1) 否定は 「ある素数nについて, n は偶数である。」 2は素数であり, かつ偶数であるから,否定は真である。 否定が真であるから,もとの命題は偽である。 (2)否定は 「すべての実数xについてx>0」 x=0のときx2=0 となるから, 否定は偽である。 否定が偽であるから,もとの命題は真である。 120 次の命題の否定を述べもとの命題とその否定の真偽を調べよ。

未解決 回答数: 1
1/650