学年

質問の種類

数学 中学生

(6)の④がわかりません😢 教えてください🙇‍♀️

(4) 表Iより 電気抵抗が5Ωのとき, 0.60A の電流が流れたので, オームの法則より, 5 (Ω)×0.60 (A) = につなぐ。 3 (V) ⑥ 発生する熱の量は電流を流した時間に比例する。 (5) 解答例の他に, 自由電子伝導電子・価電子,でもよい。 118 (6) ① ② 表 I において, 10 (Ω) 5 (Ω) になるので、電気抵抗と電流の関係は反比例。 表ⅡIにおいて, = 2 (倍), (6) 1① ア できる水の質量は, 100(g)× (3) ①1イ 電圧が2倍になると電流は2倍になるので、電圧と電流の関係は比例。表Ⅲにおいて、 1 ときの2倍になるので、水の流れにくさ(電気抵抗)は 2 (右図) 0.30 (A) 1 2 0.60 (A) = (2) I (倍)より、電気抵抗が2倍になると電流は! 1 ③ キ 10 (V) 5 (V) 0.84 (L) 0.42 (L) 間に管を通る水量は比例。 ③ 表Ⅲより, 水位の差が 7.0cm のとき, 1分間に1本の管を通る水量は0.84Lな ので, 1分間に2本の管を通る水量は 0.84 (L)×2(本) 1.68 (L) よって, 1分間にdから出る水量も = 2 (倍) より 水位の差が2倍になると1分間に管を通る水量は2倍になるので、水位の差と1分 ④ケ (7) 4(L) 1.68L ④ 図ⅣVのように2本の管をつないだとき, 1分間に2本の管を通る水量は、1本の管だけをつないだ = = 2 (倍), 0.30 (A) 0.15 (A) 倍になる。 (7) 0.2W の仕事率で, 1分間 = 60 秒間に行う仕事の大きさは,0.2(W)×60(s) = 12 (J) 12J の仕事で 30cm = 0.3mの高さまで運ぶことができる水の重さは, 12 (J) 20.3(m) = 40 (N) 40N の力で持ち上げることの 40 (N) 1 (N) x 34 ②ウ (4) ⓐ3 ⑥ ア (5) 電子 7.0 (cm) 3.5(cm) 2 2 (倍)より、 = 2 (倍), #LINE 4000 (g)より, 4kg 4kg の水の体積は4L。

回答募集中 回答数: 0
数学 中学生

解説の意味がわからないので教えて欲しいです

問題 右の図Ⅰは,太郎さんの家の風呂を描いたもので,内側は図II のように直方体ABCD-EFGH から直方体 IJKL-MNGH を除いた 形をしている。底面 EFNMと平面 IJKL は平行になっており,底 面 EFNMを底面 Pとする。この風呂に,一定の割合で水を入れ, 20分後に水を止めた。 水を入れ始めてからx分後の底面Pから水面 までの高さをycm とする。下の表は,このときのxとyの関係を 表したものである。ただし,底面Pと水面はつねに平行になっている ものとする。 AB=65cm,BC=105cmのとき,線分 JKの長さを底面P 求めなさい。 E F ( 宮城県 ) x (57) y(cm) 0 よって, JK=QK×7-4 0 4 14 8 28 (解 右の表より,水を入れ始めて8分~12分の間に, 風呂の1段目から2段目に水が入ったことがわかる。 一方,その前後を比べると, 1段目は毎分 3.5cm, 2段目は毎分2cm の割合で水位が増加している。 水量一定で、1段目と2段目は奥行きも等しいので, 12 40 x (5) y (cm) 16 48 0 0 単位時間あたりの水位の増加量は横の長さに反比例する。 右の図より, FN: QK =2:3.5=4:7 ×7=4=105×2=45 20 56 14 45cm (図I) 太郎さんの 家の風呂 4 4 4 4 (図ⅡI) 風呂の内側 A D B IL M N 4 8 12 14 28 40 48 B 16 20 56 14 12 8 8 毎分2cm 増 J Q 毎分3.5cm 増 F K N C K G 中2で習う分野 次関数

回答募集中 回答数: 0
数学 中学生

1番と3番のやり方と答え教えてください!!!

4 A社とB社のガス料金について調べた。 ガス料金は、 基本料金とガスの使用量ごとの料金を合 計したものであり、 ガスの使用量が0m²から60m²までの範囲で, A社とB社の1か月のガス 料金はそれぞれ表1、表2のようになっている。 また、下の図は, A社における1か月のガスの 使用量をxm²としたときのガス料金をy円として、 0≦x≦60のときのxとyの関係をグラフ に表したものである。 このとき,あとの (1)~(3)の問いに答えなさい。 表 1 A社の1か月のガス料金 ガスの 0m²から 使用量 20m² まで 基本料金 ガスの 使用量 ごとの 料金 基本料金 ガスの 使用量 ごとの 料金 20m²をこえて 60m²まで 500円 1m²あたり 150円 1m²あたり 125円 表2 B社の1か月のガス料金 ガスの 使用量 0m²から60m²まで 800円 1m²あたり 130円 (円) 9000 8000 7000 -6 6000 5000 4000 3000 2000 1000 0 10 20 30 40 50 60 (m²) (1) A社において、1か月のガス料金が4000円のときの1か月のガスの使用量を求めなさい。 (2)B社における1か月のガスの使用量をxm²としたときのガス料金をy円としてyをx の式で表しなさい。 ただし,xの変域は 0≦x 60 とする。 (3) 1か月のガスの使用量が同じときのA社とB社の1か月のガス料金が等しくなるのは 1か月のガスの使用量が何m²のときか, 2つ求めなさい。

回答募集中 回答数: 0
数学 中学生

4の答えは、x=二分の23、y=240です。5は五秒と8分の143です。解説お願いします😭

128 ・2 42 太陽の黒点 B 第三問 図1において, 図形ABCDEFは, 長方形から直角三角形と正方形をそれぞれ1つずつ切 り取ってできた図形であり,BC=42cm, CD=DE=EF = 8cmです。 点Pは点Bを出発し, 秒速 2cmで辺BC上を点Cまで動き, 点Cに到着したら停止します。 点Pを通り、辺BCに垂直な直線を l とします。 直線ℓが図形ABCDEFを2つの図形に分けるとき, 点Bを含む図形をS,点Cを含む 図形をTとします。 点Pが点Bを出発してからx秒後の図形Sの面積をycm²とします。 図IIは,点Pが動き始めてから 停止するまでのxとyの関係をグラフに表したものです。 0≦x≦8 では原点を頂点とする放物線, 8≦x≦17, 17≦x≦a ではそれぞれ直線となっています。 なお, 点Pが点Bにあるときのyの値は0 とし、点Pが点Cにあるときのyの値は図形ABCDEFの面積とします。 このとき、 あとの1~5の問いに答えなさい。 図 Ⅰ y=ax+b 16 128 板と遮光板 接眼レンズと に合わせて投 のである。 図形 S l 64 42 A16秒後 P→ 9 2cm/ 14 128 1 図ⅡIのグラフの中のαの値を求めなさい。 1288 y=ax² 2 辺AFの長さを求めなさい。 図形丁 16 128=64a 3x640=1848 f= 2x² 47 34秒経 4 2 n 8 tie 18 3 xの変域が 0≦x≦8 のときのyをxの式で表しなさい。 64 672 30 C 16 42 小さい 32 tis 図ⅡI (8, 198 )( 17, 1) + y (cm²) 128 128 [12 240 0 最も適切なも 128 64 x=17 (8,128) y = 8 222 480410 16 125= ご 128 2256 270 x 17 16 4 図形Sの面積が図形ABCDEFの面積の1/12 となるときのx,yの値をそれぞれ求めなさい。 480 192 16 10 256 240 x=15 ×16=240 16 16 96 7 4 5 図形Sの面積と図形Tの面積のうち,大きい方から小さい方をひいたときの差が380cm2 となる のは,点Pが動き始めてから何秒後と何秒後ですか。 16x=240 x=15 a x (秒) =15 ま Jala+b I 16240 16 80

回答募集中 回答数: 0
数学 高校生

どうやってy=9.3xのグラフを書くのですか? x=−2でy=1となる計算の仕方を教えてください。 (1)

次の関数のグラフをかけ。 また, 関数 y=3のグラフとの位置関係をいえ。 Bay ooooc (2)y=3x+1 (1) y=9.3x (3) y=3-9% 指針y=3* のグラフの平行移動・対称移動を考える。 y=f(x) のグラフに対して 解答 y=f(x-b)+α y = -f(x) (3) 底を3にする。 y=f(-x) y=-f(-x) _1) y=9・3*=32.3x=3x+2 したがって, y=9・3のグラフは, y=3のグラフをx軸方向に2だけ平行移動したもので ある。よって, そのグラフは下図 (1) -)y=3x+1=3(x-1) y=3xのグラフをx軸方向に1だけ平行移動したもの, す したがって, y=3x+1のグラフは2個 なわちy=3* のグラフを軸に関して対称移動し、更に 軸方向に1だけ平行移動したものである。 よって,そのグラフは下図 (2) x y=3-9² = − (3²) ²+3=3*3²8 y=9.3* x軸方向にか、y軸方向にだけ平行移動したもの x軸に関して y=f(x)のグラフと対称 軸に関して y=f(x)のグラフと対称 原点に関して y=f(x)のグラフと対称 したがって, y=3-9 のグラフは 3" のグラフ (*) をy軸方向に3だけ平行移動したもの, YA y=3x 9 -2 -2 234 (*)y=-3* と ラフはx軸に すなわちy=3*のグラフをx軸に関して対称移動し、更にyx軸との交点 - 3*+3=0t 軸方向に3だけ平行移動したものである。 hy よってx= よって, そのグラフは下図 (3) Zkum (2) y=3x+1 +1¹ 22 B + s ( 14 Pl Ay ly=3 13 -y=3x+1 p.260 基本事項 [1 +1 注意 (1) y=3のグ y軸方向に9倍した もある。 (3) y=3xとy=3* はy軸に関して +3 YA +3 17 13 12 0 y=3* y=3-9 +3

回答募集中 回答数: 0