学年

質問の種類

物理 高校生

どうして対象のOを取ろうとしたのか教えて欲しいです

迷 から、uk√(kは比例定数) とおける。 水深 9.0mの領域 における波の速さを [m/s] 浅瀬における波の速さを [m/s] 水深 9.0mの領域の水深をん(=9.0[m]), 浅瀬 01 より、 の水深を〔m〕 とすると, 屈折の法則 n12=- V2 h₁ 19.0 9.0 = V2 V h2 V h₂ ゆえに h= =3.0[m] 3 60° (4) 右図のように, hhhs の水深が海岸に近づくほど小さ くなる海底が続いているとすると,射線は矢印のように回り 込んでくる。 海岸に近いところでは水深が0mに近づくので, において 波の速さも0m/s に近づく。 屈折の法則 sin V2 20m/sと考えると, sinr→0, すなわち, 0°となる。 したがって, 屈折角は 0° に近づく。 これは, 波面が海岸線 と平行になることを意味する。 146 4個 (4) 深さ h3 ha h5 海岸 146) センサー34 指針 反射波を別の波源から出た波として、干渉条件を考える。 ● センサー35 センサー 36 [解説] 壁に関して Oと対称な点を O' とすると, 反射波は O' から 出たように見える。 壁での反射 で波の位相が変わらないので, 0.0' は同位相の波源と考えれ ばよい。 ここで, 波の干渉の平面図は, 81 10A 波源を結ぶ線分上にで きる定在波を拡張して 考える。 O'B=√(6入)+(8)=101 1.8 A より |O′B-OB|=|10入-8入|=2入 31- -37 m=2 m=0 面に達し との交点 2入=1×2m (m=2) 2 HB 発する素 える。 -38 と書けるので,Bは, 壁 から左向きに数えて2番 目の, 0から出た波とそ の反射波が強め合う線 線が通る。 また, 波源 0 0′ を結ぶ線分上 にできる定在波の節や腹の 位置をもとに,節線や腹線 の様子を描いて解く。その とき,m=01 2 … の どの条件にあてはまる節線, 腹線であるかを示しておく こと。 3 5 ---- 81 別解 線分OB上の点を Pとすると -31- 11 10'0-0|=6入 であり , -x2m (m = 6) 1/2× と書けるので,Oは6番 61=- 。 目の強め合う線が通る。 0 m=6543210 A したがって, OB間には5本の腹線が通る。 2本の腹線の間に節線が1本ずつあるので, 線分 OB上に波が 互いに弱め合う点は4個ある。 2≤ | OP-OP|≦6入 である。 波が弱め合う条件 から, 21≤(2m+1) ≤61 を満たす整数の個数を 求めてもよい。 波の反射では,反射面 について波源の対称点を考 えるとよい。 油の +9

回答募集中 回答数: 0
数学 高校生

高校数学の問題です。 ( 1)を判別式で解いたのですが 答えの範囲が出てきませんでした。 判別式で解く方法で教えてください。

実戦問題 13 2次方程式の解の存在範囲 mを定数として, 2次方程式x+2(m+2)x+2m+12 = 0... ① について考える。友 (2) 方程式 ①が2より大きい解と2より小さい解を1つずつもつとき, m の値の範囲は m<オカである。 (1)方程式 ①が異なる2つの正の解をもつときの値の範囲は アイ <m< ウエ である。 (3) 方程式 ①が1と2の間、2と3の間にそれぞれ解を1つずつもつとき,mの値の範囲は 解答 (1) f(x)=x+2(m+2)x+2m +12 とおくと f(x) = {x+(m+2)}2-(m+2)^+2m+12 =(x+m+2)-m²-2m+8 @ 方程式 ①が異なる2つの正の解をもつとき, y = f(x) のグラフは次 の (i)~ (iii) を満たす。 キクケ コ <<サシ y=f(x)のグラフは頂点が (-m-2, -m²-2m+8) であり、下に凸の放物線であ ( f (1 Key 1 (i) x軸と異なる2点で交わる。 y=f(x) (不 (ii) 軸が x > 0 の部分にある。 (iii) f(0) > 0 (i)より, 頂点のy座標は負であるから m²-2m+8< 0 0 f(0) 2次方程式 ① の判別式を考え O x D -m-2 4 = (m+2)² − (2m+12) > よって,m²+2m-80より (-2)(+4)>0 としてもよい。 ゆえに m<-4, 2<m (ii)より, 軸について x=-m-2> 0 ゆえに m<-2 C (Ⅲ)より,f(0) =2m+120 であるから m>-6 (i) ~ (Ⅲ)より, 求めるmの値の範囲は -6<m<-4 (-6-4-2 2 m (2) 方程式①が2より大きい解と2より小さい解をもつとき,y=f(x) y=f(x) のグラフは下に凸 Key 1 のグラフはf(2) を満たす。 f(2) = 6m+24 < 0 ゆえに m<-4 y y=f(x) 放物線であるから, f (2) <0 満たせば、必然的にx>2 範囲とx<2の範囲のそれ れにおいて, 1度ずつx軸と わる。 Key (3) 方程式 ①が1と2の間,2と3の間にそれぞれ 解を1つずつもつとき,y=f(x) のグラフは次 の (iv) ~ (vi) を満たす。 (iv) f (1) > 0 (v) f(2) <0 (vi) f(3)>0 (iv) より f(1) = 4m+170 であるから (v)よりf(2)=6m+24< 0 であるから 17 m>- 4 (vi) よりf(3) = 8m+33> 0 であるから (iv)~ (vi) より, 求めるmの値の範囲は - m <-4 攻略のカギ! y=f(x) 2 1 3 x m>- 388 33 33 <m<4 17 33

回答募集中 回答数: 0