学年

質問の種類

数学 高校生

数A 解説見てもよくわからないです。詳しい解説お願いします。 (1)の自称Aの時点で何言っているのかわかりません

いろな試行と確率 403 204 反復試行(4) さいころを回(n≧2) 投げるとき,次の確率を求めよ. 出る目の和がn+2である確率 (2)出る目の積が4の倍数である確率 和が+2になる場合を考えると, 方 (1) すべての出る目が1の場合その和はnになる. 2の目が1回出て,残りが1の目のとき,和はn+1 あと1必要なので、2の目が合計2回出る 3の目が1回出て, 残りが1の目のときは n+2 4の目が1回出て, 残りが1の目のとき,和は+3 となり,不適. 5,6の場合も同様に不適である. (2)4の倍数になるのは, 4×(整数)=2×2×(整数) このことから出る目の積が4の倍数になるには, 少なくとも1回は4の目が出る 少なくとも2回は2の目または6の目が出る の場合であるから, 4の倍数にならない」 (余事象) を考えてみる。 (1) 出る目の和がn+2になるのは, 事象A2の目が2回, 残りが1の目 事象B3の目が1回 残りが1の目 6 **** 2の目が出る確率 目16 確率は、P(A)=,ax (x(c) 2 n(n-1)x()" P(B) = „C₁x()x(t)=(+)" n-1 1の目が出る確率 n =n° 16 , よって、P(A)+P(B)=(n-1)×(1/2)+(1/2)^ (n²-n+2n). (t)" n(n+1) 2 1x (1) (2)4の倍数にならないのは, 事象A: 135から出る 確率はP(A)-(2)-(2) 事象B:26から1回だけ出てあとは 1, 3, 5から出る 数分解したとき N=2・3・5" と素因 P(B)-C()(3)-(+)-(+)" 4の倍数p 4の倍数ではない ⇔p=0 かp=1 2n = よって、4の倍数になる確率は, 1-(1/2)-2/7(1/2)=1 2n 2n+3/1\" 3 2 余事象の確率 1-P(A)-P(B) 3 投げるとき、次の確率を求めよ. (2)出る目の積が6の倍数である確率

解決済み 回答数: 1
数学 高校生

数学B、数学的帰納法の問題についての質問です。 下の赤いボールペンで線を引いた下から2行目のn=2kの部分ですが、この時「kは自然数」や「kは整数」などの断り書きはしなくても良いのでしょうか? 普通の帰納法の問題では、n=kで命題の成立を仮定する時に、nが自然数なのでn=k... 続きを読む

EX (1,2, b1=1 および 033 1+1=2+3b, b+1=a+2b(n= 1, 2, 3. ......) で定められた数列{a}{b}がある。 Cab とするとき (1) C2 を求めよ。 (2) Cm は偶数であることを示せ。 (3)が偶数のとき, C7は28で割り切れることを示せ。 [北海道太] ←各漸化式に n=1 を代 b2=a1+2b1=2+2・1=4 (1) a2=2a1+3b」=2・2+3・1=7, よって C2=azbz=7.4=28 (2) [1] n=1のとき C=ab=21=2であるから, Cn は偶数である。 [2] n=kのとき, C が偶数であると仮定すると, Ck=2mm は整数)と表される。 n=k+1のときを考えると Ck+1=ak+1bk+1=(20+3bk) (+20k) =2a2+7akbk+65k2 =2ak+7.2m+60m² =2(ax²+7m+3bk²) +7m+3bk2は整数であるから, Ck+1 は偶数である。 よって, n=k+1のときも成り立つ。 [1] [2] から すべての自然数nに対してcmは偶数である。 (3) [1] n=2のとき C2=28であるから, C7は28で割り切れる。 [2] n=2kのとき, C2kが28で割り切れると仮定すると, C2k=28m (mは整数)と表される。 入する。 ←数学的帰納法で証明。 ←akbn=ch=2m ←漸化式から、すべての n に対して, an, bm は整 数である。 ←数学的帰納法で証明。 [n=2, 4, .... 2k, ... が対 象である。

解決済み 回答数: 1