学年

質問の種類

化学 高校生

xとyです まったくわかりません

2. 1族, 2族の金属元素に関する次の問いに答えよ。 (H=1.0, Li = 6.9, Be=9.0,C=12, 0=16, a Na=23,Mg=24,K=39,Ca=40) 金属 X, Y は, 1族元素のリチウムLi, ナトリウム Na, カリウムK, 2族元素のベリ 反応して水素H2 を発生し, Yは室温の水と反応してH2を発生する。 そこで、さまざ リウム Be, マグネシウム Mg, カルシウム Caのいずれかの単体である。Xは希塩酸と まな質量の X, Y を用意し, Xは希塩酸と, Yは室温の水とすべて反応させ、発生し H2の体積を測定した。 反応させた X, Y の質量と, 発生した H2 の体積 (0℃, 1.013 × 105 Paにおける体積に換算した値) との関係を図1に示す。 発生したH2 の体積(mL) 50454038 30 220 15 10 金属 X × 25 × 5 金属 Y x : 金属 X ● : 金属 Y. 0 0 10 20 30 40 50 60 金属の質量 (mg) 図1 反応させた金属 X, Yの質量と発生したH2 の体積 (0℃, 1013×10 Pa における体積に換算した値) の関係 このとき,X,Yとして最も適当なものを,後の①~⑥のうちからそれぞれ一つ ずつ選べ。 ただし, 気体定数はR = 8.31×10°Pa・L/(K・mol) とする。 Li ② Na ③K X[ ] Y[ ④ Be ⑤ Mg ⑥ Ca マグネシウムの酸化物 MgO, 水酸化物 Mg(OH)2, 炭酸塩 MgCO3の混合物 A を乾燥 た酸素中で加熱すると, 水H2O と二酸化炭素 CO2が発生し、後にMgO のみが残る 図2の装置を用いて混合物 A を反応管中で加熱し、発生した気体をすべて吸収管

回答募集中 回答数: 0
数学 中学生

【解答求】問4の解説お願いします。三枚目の写真については、多分間違っているとは思いますが自分なりに解きました。が、答えと照らし合わせながら解き、答えが出ただけでやみくもにやったのでこの式がどういった経緯でできているのか分かりません笑

右の図1のように, 高さが200cmの直方体の水そうの中に, 3つの同じ直方体が, 合同な面どうしが重なるように階段状に並んでいる。 3つの直方体および直方体と水 図 1 そうの面との間にすきまはない。 この水そうは水平に置かれており,給水口Iと給水 給水口Ⅱ I, 排水口がついている。 給水口 A 360:20th 200cm 360 D H G B E F C 排水口 18 図2はこの水そうを面 ABCD 側から見た図である。 点E, Fは,辺BC上にある直方体の 頂点であり, BEEF = FCである。 また, 点 G, H は, 辺 CD 上にある直方体の頂点であり, CG=GH=40cmである。 この水そうには水は入っておらず,給水口Iと給水口Ⅱ 排水口は 閉じられている。この状態から、次のア~ウの操作を順に行った。 図 2 A D 200cm 給水口のみを開き、 給水する。 水面の高さが 80cmになったときに、給水口I を開いたまま給水口 II を開き、 給水する。 ウ 水面の高さが200cmになったところで、給水口Iと給水口Ⅱを同時に閉じる。 # # # B E F H G40cm 40cm C ただし、水面の高さとは,水そうの底面から水面までの高さとする。 130分 10分 給水口Iを開いてからx分後の水面の高さを ycmとするとき,x と yの関係は,右の表の 表 ようになった。 x (分) 0 15 50 このとき、次の問いに答えなさい。 ただし、給水口Iと給水口Ⅱ, 排水口からはそれぞれ一定の割合で水が流れるものとする。 y (cm) 0 20 200 = 20のとき

回答募集中 回答数: 0
物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0