学年

質問の種類

数学 高校生

この青の部分どうしてこのように変形できるか 教えて欲しいです

例題 349 ベクトルと軌跡 平面上に∠A=90° である△ABCがある。 この平面上の点Pが AP・BP + BP・CP+CP・AP = 0 ・・・ ① を満たすとき, 点Pはどのような図形をえがくか。 のプロセス 基準を定める ① は始点がそろっていない。 図形がわかる P(n) のベクトル方程式を導く。 at (nan=0の形 直線: 円:16-al=や(カー)(カーb)=0の Action》 点Pの軌跡は,P(n) に関するベクトル方程式をつくれ 基準をAとし,① の始点をAにそろえ, AB=1, AC = c, AP = p とおくと, b. c = 0 ∠A=90°より このとき, ① は よって þ · (p − b ) + (p − b) · (p − c ) + (p—c) · p = 0G 322万・ ・ || B ₁² - 2²/²/2 ( 6 + c) · p = 0 |b-/- (b + c)² — — — 1 b + c | ² = 0 9 例題 332 ここで, b+c 3 b+c 3 b+c 3 ②は ||GP|=|AG| したがって, 点Pは△ABC の重心 Gを中心とし, AGの長さを半径と する円をえがく。 〔別解〕 (6行目までは同様) 練習 349 平面上に で表される点は△ABCの重心Gであるか A このとき,中心の位置ベクトルは △ABC の重心G である。 B b·{b− ² (6+c)} =0 £9, AÈ = ²(6+c) ² < ², 点PはAEを直径とする円である。 M b+c 3 1006-c=0 基準をAにする。 であり,これは ( 以降同様) 2次式の平方完成のよう に考える

回答募集中 回答数: 0
数学 高校生

1枚目の(2)は3パターンで場合分け2枚目の(2)は2パターンで場合分け このような場合分けの違いはどこから分かるのですか?

E 重要 例題110 2次不等式の解法 (4) 次の不等式を解け。 ただし, α は定数とする。 x²+(2-a)x−2a≤0 計 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0の2次方程 ① 因数分解の利用 それには の2通りあるが、 ② 解の公式利用 は左辺を因数分解してみるとうまくいく。 a<βのとき β<x (x-a)(x-B)>0<x<α, (x-α)(x-B)<0⇒a<x<B βがαの式になるときは,α と B の大小関係で場合分けをして上の公式を α, (2)の係数に注意が必要。 a>0,a=0, a<Qで場合分け。」 (2ax² sax CHART (x-α)(x-B) ≧0の解α, β の大小関係に注意このように分けると 113 金の向きかかわる。 530 解答 (1)x+(2-a)x-2a≦0から [1] a<-2のとき, ① の解はa≦x≦-2 [2] α=-2のとき, ① は (x+2)² ≤0 は x=-2 7:00~でするのは2次方程式 [3] -2 <a のとき, ① の解は -2≦x≦a 以上から a<-2のとき a≦x≦2 元=2のとき x=-2 2<αのとき -2≦x≦a (x+2)(x-a) ≤0 ...... 11 [1] (2) ax≦ax から ax(x-1)≦0 [1] a>0 のとき, ① から よっては 0≦x≦1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よっては すべての実数 [3] a<0のとき, ① から x(x-1)≧0 ① x(x-1)≦0 よって解は x≤0, 1≤x 以上から 練習次の不等式を解け 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のときすべての実数; a<0のとき x≦0, 1≦x to til 11 a 0 する x -2 基 [2] V x [3] tel -2 $3@1> [1] ① の両辺を正の数αで割る。 注意 (2) について, ax≦ax の両辺をaxで割って, x≦1としたら誤り。 なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 (3) 26 Ist 0≦0 となる。 は 「くまたは=」 の意味なので、くと= のどちらか 一方が成り立てば正しい。 ① の両辺を負の数 α で割る。 負の数で割るから、不等号の向き が変わる。 3 2次不等式 13

回答募集中 回答数: 0