学年

質問の種類

地学 高校生

問2がいまいちよく理解できません。分かりやすく解説していただけるとうれしいです。お願いします

思考 133. 銀河系の構造図は、銀河系の構造を模式的に示したものである。 次の文章を読み、 図を参考にして以下の問いに答えよ。 銀河系のおよそ(ア)個の恒星は,主に 直径2万光年の球状の(イ)と直径約10万 光年の円盤部に分布している。 また, およそ 約200個のウ)星団は、銀河系全体を取 り囲む直径約15万光年の球状の領域である 35. (エ)に分布している。 太陽系は、銀河系の中心から約 2.8万光年 に位置し, 速さ約220km/sで公転している。 このことから, 銀河系の中心の周りを一周す。 20-00xN るのに約(オ億年かかることがわかる。 問1 文章中,図中の空欄 (ア)~(エ)に入る最も適当な語または数値を答えよ。 問2 太陽系が銀河系の中心を中心とする円周上を,一定の速さで運動していると仮定し (オ)を有効数字2桁で求めよ。 ただし, 光の速度=30万km/s,π= 3.14 とし, 途中の計算式も答えよ。 問3 太陽系の年齢を46億歳とし, 太陽系が誕生してから現在までに銀河系の中心の周り を約何周したかを有効数字2桁で求めよ。 ただし, 太陽系の誕生以来,太陽系の軌道 は変化しなかったと仮定する。 途中の計算式も答えよ。 [知識] 星団 円盤部 イ エ 太陽 場合で2.8万光年 |10万光年 15万光年 (09 広島大 改 ) K 13 原 1²

回答募集中 回答数: 0
数学 高校生

2番解説してください!

240 第4章 図形と計量 考え方 (1) 正弦定理 例題 123 正弦と余弦の融合 8 △ABCにおいて13 sin A sin B (1) cos A, cos B, cos C を求めよ. (2) A,B,C のうち, 2番目に大きい角は30°より大きいことを示せ 解答 Focus 注> necos A = b sin B sin A a: bic=sin sin B: sin C となることを利用する. (2) 2番目に大きい角は、2番目に長い辺の材類である。(辺と角の大小川県) a より (1) 正弦定理 sin C sin B sin A a:b:c=sinA : sin B: sin C 条件より, sin A: sin B: sinC=13:8:7 a:b:c=13:8:7 したがって, cos B= となり, a=13k, b=8k,c=7k(k>0) とおける.aa:bic が定まる よって、余弦定理より, cos C= cos B= だから, よって, 11 22 13 26' 222=484, 6²+c²-a²_(8k)²+(7k)²-(13k)² 2bc 2.8k 7k c²+ a² − b² _ (7k)²+(13k)²-(8k) ² 11 - 2ca 2.7k 13k sin C 13 ¸a²+ b² −c² _ (13k)²+(8k)²—(7k)² __ 23 = OST 26 082.13k-8k 2ab A (2) (1)より,a>b>cであるから、2番目に大きい角は Bである. = 7 sin C DELA ARSA 正弦定理 C =2R より, cos B < cos 30° B> 30° cos 30°: これより, a:b: が成り立っている。 PORTS = (13√3)=507 /3 13√3 2 26 0e=" 2 == a sin A sin B sin C a:b:c=sinA: sin B: sin C で, 00-808- ASEANCA より、 けで大きさは定ま ない。この比率を とおく. A ~8k 7k B 13k 辺と角の大小関係 (p.425 参照) y -1 例題 3 (1 考えた 0 [11 30% cos B cos3 sin B sin C sin=2R より a=2RsinA,6=2Rsin B, c=2RsinC 解

未解決 回答数: 1