学年

質問の種類

数学 高校生

下から4行目のbm+2がなぜ、b1.b3.b5となるのかわからないです。教えてください

重要 例題 数列{an}, {0} の一般項を an=3n-1,b=2" とする。 列{an} の項でもあるものを小さい方から並べて数列{c} を作るとき, の一般項を求めよ。 学ごとに意を元金 数の項のうち、数 数列{col 10g 重要 93, 基本 99 12. 指針 > 2つの等差数列の共通な項の問題(例題93)と同じようにとおすきなうとしてと 関係を調べるが,それだけでは{cm} の一般項を求めることができない。 そこで,数列{an}, {bn} の項を書き出してみると,次のようになる。 {az}:2,5,8, 11, 14, 17, 20, 23, 26, 29,32, {0}:2,4,8,16,32, Ci=b, C2=bs,C3= bs となっていることから, 数列{6} を基準として, 6m+1が数列{c.) の項となるかどうか, bm+2 が数列{a} の項となるかどうか… 見つける。 を順に調べ, 規則性を (1-b)n-bs 104 指 解答 α=2, b1=2であるから C1=2 (14b)(1-B 数列{an} の第1項が数列{6} の第m項に等しいとするとb-b8 3l-1=2m 0-(8-bb ゆえに bm+1=2m+1=2".2=(3-1) ・2 E="b 24 =3.21-2 ① よって, bm+1 は数列{an} の項ではない。 ①から bm+2=26m+1=3・4l-4 - <30-1 の形にならない。 =3(4-1)-1 ゆえに, bm+2 は数列{an} の項である。 したがって {C}:b1,63,65, ...... 数列{c} は公比 2 の等比数列で, C1=2 であるから Cn=2(22)"-1=22n-1 =41 などと答えてもよ い。

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)で、なぜ9+3になるのかが分かりません。教えてくださいよろしくお願いします

●7 重複組合せ A,B,C,D の4種類の缶詰を合わせて9個買うとき, (1) それぞれの缶詰を少なくとも1個は買う場合,買い方は何通りあるか. (2) 買わない缶詰の種類があってもよい場合, 買い方は何通りあるか. 種類ごとにまとめて並べる ← (産業能率大) 理するとしたら、多くの人が「左から A,B,C,D の順に、同じ種類の缶詰をまとめて並べる」とする 同じ買い方か違う買い方かが一目でわかるように(買った缶詰を)整 のではないか.例えば,Aを3個, Bを4個 Cを1個,Dを1個ならAAABBBBCDとなる.そして, この文字列は, AとBの境,BとCの境, C とDの境が決まれば決まる (復元できる). 000100001010 つまり右のように A~Dを〇境を仕切りで表せば,9個の○と3個のの並びと対応する. (1)は,仕切りが両端にはなく,かつ隣り合わない。 (2) は並び順は自由である.このような○と の並べ方の総数を求める. 解答圜 (1) ○を9個並べておき,○の間 (図の1)8か所 から異なる3か所を選んで仕切りを入れる. 仕切り で区切られた 4か所の○の個数を左から順に A, B, C,D の個数とすると,どの場所にも○は1個以上あ るので題意の買い方と対応する. よって, 求める場合 AAABBBBCD ↑↑↑ |0|000 A B C D 8・7・6 3.2 =56(通り) の数は仕切りの位置の選び方と同じで, 8C3= (2) ○を9個, を3個, 横一列に自由に並べ、 個数 (○がないところは0個) を左から順に A, B, C, D の個数とする. この並べ方と題意の買い方は 対応するから,求める場合の数は, 9+3C3= 9+3つ で区切られた4か所の○の 000||000000 A B C D 12-11-10 =220 (通り) 3・2 ■(2)で,各缶詰を1個ずつ余分に買うとすると, 合わせて13個, 各1個以上な ので (1) と同様にできる (式も 12C3となる). 逆に (1) を各缶詰を1個ずつ減ら して(2)のように解いてもよい。 □Aをx個, Bをy個, Cを2個, Dをw個買うとすると, x+y+z+w=9で, (1)はxwが1以上, (2) は x~w が0以上である. このような~w の組の 個数を求めたことになる. p.25のミニ講座も参照. 買い方を決めれば仕切りの位置 が決まる。仕切りの位置が違え ば違う買い方と対応する。 07 演習題(解答は p.21) 2008 は,各位の数字の和が10になる4桁の自然数である。 (実際に2008 の各位の数字 の和は2+0+0+8=10である.) このように, 各位の数字の和が10になる4桁の自然数 は全部で 個ある. x+y+z+w=10だが

回答募集中 回答数: 0
数学 高校生

◯で囲ってある部分が足し算なのはなぜですか?問題によっては×場合もあるので使い分けを教えて頂きたいです。

子が少なく メー 35 順列組合せと確率 (1) 大人6人と子供3人の合計9人が1列になって山登りをする。 登る順番をくじで決めるとき、 先頭と最後尾が大人にな 率は I 子供3人が全員隣り合う確率は である。 E& [オ] また、子供が必ず大人になる確率は である。 [クケ 袋の中に、白味が1個、赤球が2個、青味が3個、黒球が4個。 合計 10 個の球が入っている。 この袋から同時に3個の を取り出すとき、取り出した球の色がすべて異なる確率は [スセ サシ 取り出した球の色が2種類である確率は [ソダ] である。 また白球は取り出さず、青球を少なくとも1個取り出す確率は である。 [ツテ 男 解答 のうち3が (1)9人が1列に並ぶ並び方は全部で9通り。 P× 71 91 Key 1 このうち、先頭と最後尾が大人になる並び方はP2×71通りであるか ら、求める確率は 71×31 ■る。 Key 1 9! 1 12 また、子供3人が全員隣り合う並び方は71×3通りあるから, 求め る確率は 5 12 61 x P = Key 1 さらに、子供の前後が必ず大人になる並び方は61×5P3通りあるか ら、求める確率は 5 42 Key 1 91 [2]10個の球が入った袋から3個の球を取り出す場合の数は 10 C3 通り 取り出した球の色がすべて異なる確率は, 取り出す球の色を考えて CXCXC₁+CXCXCCXCXC₁+CXCXC₁ 10C3 2・3・4+1・3・4+1・2・4+ 1・2・3 先頭と最後尾の大人の並び方が P2 通り, 残りの7人の並び方 が!通り。 隣り合う子供3人1組と大人 6 人の並び方が7!通り, 隣り合 子供3人の並び方が3!通り。 まず大人6人の並び方が61 通 り、大人の5か所のうち3か 所に子供が並ぶ並び方が & P3 通 り。 3個の球の色は (赤,青,黒), (白、青、黒), (白、赤、黒), (白、赤、青) の場合がある。 2人を 組の2人 細に 120 50 120 5 12 取り出した球の色が1種類となるのは、取り出した球が3個とも青 球の場合と, 3個とも黒球の場合があるから,その確率は がな C+C3 ==== Key 1 10C3 1+4 120 = 1 24 よって、取り出した球の色が2種類である確率は 5 13 + 24, 24 ) Key 2 区 の Key 1 1-( 12 また白球は取り出さず, 青球を少なくとも1個取り出すのは、青球 を1個,赤球と黒球6個の中から2個取り出す場合, 青球を2個, 赤 球と黒球6個の中から1個取り出す場合, 青球を3個取り出す場合 があるから,その確率は 3C X6Cz + 3C2 X 6C + 3 Ca 3・15 +3.6 +1 10 C3 8 120 15 余事象を利用する。 球の色が 2種類となることの余事象は 色がすべて異なる (3種類) か 1種類となることである。 攻攻略のカギ! (事象の起こる場合の数) Key 1 事象A が起こる確率 P(A) は,P(A)= とせよ18 (p.68 (起こり得るすべての場合の数) 事象Aが起こる確率を求めるときは、 起こり得るすべての場合 (全事象) の数と, 事象Aの起こ 合の数をそれぞれ求め、 その比を考える。 確率を求めるときには,扱うもの (球やカード,硬貨やさいころ等)に見かけ上区別がつかなく すべて異なると考えて場合の数を計算することに注意する。 Key 2 事象A が起こらない確率P(A) は, P(A)=1-P(A) を利用せよ 72 オ カキ ク ケ コ

回答募集中 回答数: 0