学年

質問の種類

数学 高校生

答えを見てもよくわからないので教えてもらいたいです!

AX の和 9,35 用 確率と漸化式 (1) 日本 例題 37 00000 12, 3, 4,5,6,7, 8 の数字が書かれた8枚のカードの中から1枚取り出し てもとに戻すことをn回行う。 この回の試行で、数字8のカードが取り出 をnの式で表せ。 される回数が奇数である確率 CHART 確率と漸化式 2回目と (n+1) 回目に着目 & SOLUTION 回の試行で、数字8のカードが取り出される回数が奇数である n 確率がpn であるから, 偶数である確率は 1-pr (n+1)回の試行でDn+1 を求めるには, 次の2つの場合を考える。 n回の試行で奇数回で, (n+1) 回目に8以外のカードを取り出す [1] n n [2] 回の試行で偶数回で, (n+1)回目に8のカードを取り出す 解答 (n+1)回の試行で8のカードが奇数回取り出されるのは, [1] n回の試行で8のカードが奇数回取り出され, (n+1)回目に8のカードが取り出されない [2] n回の試行で8のカードが偶数回取り出され, (n+1)回目に8のカードが取り出される のいずれかであり, [1], [2] は互いに排反であるから 7 Pn+1=Pn• g + (1 − Pn) • _ _ = ³ / Pn + = = = 3 8 LO 変形すると したがって Pn+1 Pi +- 2 - ³ (P-1) 4 1 3/YOSH 1 1 1 2 8 2 また よって,数列{ po-12/2} は初項 - 18 公比 24 の等比数列で 3 3 あるから 1 2 - 3/3\n-1 8 4 3 8 Pn 1 1/3\n pn = ²/2 - 1/2 (³)" - ²1 (1-(³)"} Pn = 24 (1) P1, P2 を求めよ。 (C) 1 (3) Pm を求めよ。 D 8 98* 30 (+1)回目 inf. ① 確率の加法定理 事象 A,Bが互いに排反 (A∩B=①) のとき P(AUB)=P(A)+P(B) ② 独立な試行S, Tで、 Sでは事象A, Tでは 事象Bが起こる事象をC とすると P(C)=P(A)P(B) =-2a+1/2 を解くと a=²1/22 は 1枚目のカード が8の確率であるから 1 Aneke PRACTICE 37 ③ さいころをn回投げるとき,6の目が出た回数をXとし,Xが偶数である確率をP とする。 (2) P1 をP を用いて表せ。 (1) [学習院大 ]

回答募集中 回答数: 0
数学 高校生

格子点の問題の解き方を教えて欲しいです!

ともに整数で 並ぶから、 る。 いた よび内部である。 (1) 領域は、右の図の赤く塗った三角形の周お 直線y=k (n-1, ......, 0) 上には, 0 (2n−2k+1) 個の格子点が並ぶ。 よって, 格子点の総数は 基本 16 (2n-2k+1)=(2n-2.0+1) k=0 =n²+2n+1=(n+1)² (1) n +(-2k+2n+1) =2n+1-2・1/23n(n+1)+(2n+1)n y4 k=1 n. 0 n =(n²+1)+(n²+1)Σ1−Σk² x+2y=2n k=1 y n n-1 線分x+2y=2n(0≦y≦n) 上の格子点(0, n), (2, n-1), ....*', (2,0)の個数はn+1 4 (0, 0), (2n, 0), (2n, n), 06 (n+1) 個 (0, n) を頂点とする長方形の周お よび内部にある格子点の個数は (2n+1)(n+1) (対角線上の格子点の数) ゆえに、求める格子点の個数をNとすると 2N-(n+1)=(2n+1)(n+1) (*) =(長方形の周および内 部にある格子点の数) よってN=1/12 ((2n+1)(n+1)+(n+1)=1/27(n+1)(2n+2)=(n+1)^(個) (2)領域は,右の図の赤く塗った部分の周および内部であ る。 直線x=k(k=0, 1,2, YA n-1, n) 上には, ²k2+1) 個の格子点が並ぶ。 よって, 格子点の総数は Σ(n²−k²+1)=(n²-0²+1)+Σ(n²+1−k²) ==(n+1)(6(n²+1)-n(2n+1)} =(n+1)(4n²−n+6) (13) k 1 0 JU [+2+A01+³A01- 1 2 2n =(n+1)+(n+1)-1/12n(n+1)(2n+1) =(n+1)(n²+1)-1/1/n(n+1)(2n+1) -y=-11/2x+n (x-2n-2y) 2n-2k 2n-1 2n-21 2n k=0 の値を別扱いした -2Ek+ 0 = -2.1/n(n+1) Σk+(2n+1)Σ1 n² n²-1 n²-2 k² k=0 +(2n+1)(n+1) でもよい。 (*) 長方形は,対角線で 2つの合同な三角形に分け られる。よって ( 求める格子点の数) ×2 y=x2 k=1 391 0 1 R n 別解 長方形の周および内 部にある格子点の個数 (²+1)(n+1) から,領域 外の個数を引く。 ors (2) 0≤x≤n, y≥x², y≤2x² 1章 x 3 PRACTICE 280 次の連立不等式の表す領域に含まれる格子点の個数を求めよ。 ただし, nは自然数と する。 (1) x20, y≥0, x+3y≤3n 種々の数列

回答募集中 回答数: 0
数学 高校生

格子点の個数の問題が全くわかりません! 考え方を教えて欲しいです。

票がともに整数で =x² xa 基本 16 ey が並ぶから, になる。 いた (1) 領域は, よび内部である。 直線y=k(n-1, (2m-2k+1) 個の格子点が並ぶ。 よって, 格子点の総数は 右の図の赤く塗った三角形の周 2-0 (2n-2k+1)=(2n-2-0+1) .....,.0) 上には、 ゆえに, k=1 =n²+2n+1=(n+1)² (13) ya 線分x+2y=2n (0≦y≦n) + 2(−2k+2n+1) = 2n+1-2·½n(n+1)+(2n+1)n ya n -1 0 k k=1 1 -x+2y=2n O 上の格子点(0, n), (2,n-1), (2n, 0)の個数はn+1 4 (0, 0), (2n, 0), (2n, n), よび内部にある格子点の個数は (2n+1)(n+1) 0, n) を頂点とする長方形の周お 求める格子点の個数をNとすると 2N-(n+1)=(2n+1)(n+1) - (*) よってN=1/12 (2n+1)(n+1)+(n+1)=1/2(n+1)(2+2)=(n+1) US (n+1)個 2n 12 (2) 領域は,右の図の赤く塗った部分の周および内部であ る。直線x=k(k=0,1,2, (n²-k²+1) 個の格子点が並ぶ。 よって, 格子点の総数は ......, n-1, n) 上には x £(n²−k² + 1) =(n²−0²+1)+ Σ(n²+1−k²) ___ \7 +3 k=0 までの和を求めよ =(n²+1)+(n²+1)Σ¹–Ë k² k=1 = (n²+1)+(n²+1)n- n(n+1)(2n+1) 2=(n+1)(n²+1)-1/12 n(n+1)(2n+1) とする=1/(n+16(n²+1)-z(2n+1)} 400*NZJJR$ 1+2+01+01+ =(n+1)(4n³²_n+6) (15) 12m-21 2m 2月2k 2m-1 k=0 の値を別扱いした が、 -2 Ek+(2n+1) 1 = -2- -— n(n+1) ( 求める格子点の数)×2 √743' k21 でもよい。 (*) 長方形は,対角線で 2つの合同な三角形に分け られる。 よって n²-1 (対角線上の格子点の数) =(長方形の周および内 部にある格子点の数) ²-2 +(2n+1)(n+1) 391 1 y=x² 1章 (A) OTS 3 1 k n 800 別解 長方形の周および内 部にある格子点の個数 (²+1)(n+1) から 領域 (2) 0≤x≤n, y≥x², y≤2x² 種々の数列 外の個数を引く。 k=1 x PRACTICE 280 次の連立不等式の表す領域に含まれる格子点の個数を求めよ。ただし,nは自然数と -Tore : S する。 (1) x≧0 y≧0,x+3y≦3n

回答募集中 回答数: 0
英語 高校生

わかりません

Step 2 1 次の各文の 1. Tom |内に入れるのに最も適当なものを、一つずつ選びなさい。 be living in London now; he moved to Tokyo two months ago. ② would 3 can 4 cannot (愛知工大) ① ought to 2. After a lot of practice he was ① able ② easy 3. Under the circumstances it ① might to understand spoken English. 3 good ④ possible ought 4. I promised that I would lose weight, so I ① don't have to ② must ③ have You must not ③ No, you have to 7. Miki and her family no answer. ① could go be best to wait for a few weeks. needed ④ seemed 5. The room is full of gas, so you ① didn't ② needn't 6. A: Do I have to finish this work today? B: must be strike a match. ③ couldn't ③ should go eat snacks between meals. ④ mustn't ④ mustn't (センター試験) would be ② No, you may not ④ No, you don't have to lout of town. I have called several times, but there is (東京経大) 10. 彼女は長い間歩いておなかがすいているにちがいない。 She (be / after/ hungry/must/ walking) for a long time. (芝浦工大) (日本大) Notes, 8. performance 「演技,芸当 」 3. under the circumstances 「そういう状況では」 9. unlike ... 9. in time 「間に合って (治療が可能な段階で)」 「…..と違って」 (近畿大) 2 ► ( 内に与えられた語句を並べかえて文を完成させなさい。 8. Monkeys learn tricks (give great performances / they will / that / be able to / so easily) in a short time. (名古屋工大) (南山大) 9. 他の病気とは異なり,ガンは適時に適切な手当てをしても治るとは限らない。 Unlike other (be/by/cancer / cured / diseases / may / not / proper) treatment in time. (金沢工大 ) Par 1 ( 大阪学院大 ) 文法編 7

回答募集中 回答数: 0
英語 高校生

英作文の添削をお願いします。😌

[4] Read the instructions and write a well-organized answer in English. (50 points) Virtual reality (VR)* refers to a high-quality simulation of reality created by a computer. Probably the most famous use for VR so far is gaming. But VR has also been used to improve society in various fields such as education, medicine, and engineering. Describe a single specific way that virtual reality can be used to improve society. Explain your idea in detail in about 100 English words. Notes: Virtual reality (VR)*: VR systems use special glasses that completely cover the user's eyes. These glasses show a very realistic picture of a world created by the computer. In addition, the systems can tell when the user moves their head, arms, and sometimes other body parts. So users can control the action by natural movement. Some systems even let users feel like they are touching things. Thus, VR systems can make users feel like they are really in another world. 〔答案〕 I suggest you to simulation with VR. For example, doctors can practice operation. I have the three reasons. First, VR's display is very real. So doctors can do as if real simulation. Second, every one can make simulation software. If you want add patients information to VR and study how to make software, you can make VR software to yourself. Third, medical professors can use VR simulation in lecture. If they do this, Students who want be surgeon in the future will reduce about operation's anxiety. In this way, VR have a lot of possibilities that useful of medical field. For these reasons, I suggest VR simulations.

回答募集中 回答数: 0
生物 高校生

問8〜問12まで問題の意味がよく分からないです どなたか教えてくれませんか???   お願いします!

てそ 音量は通常1 うに調整され 問8 右のグラフは血しょう中のグルコース濃度と、原尿及び尿中の グルコース濃度の関係を示したものである。 (1) 2本のグラフをもとに、 血しょう中のグルコース濃度と、尿が 生成する過程で再吸収されたグルコースの濃度との関係を表 すグラフを解答欄の図に書き込め (2) このグラフからグルコースの血しょう中の濃度と再吸収がどのL ような関係にあるか説明せよ。 グルコース取り込み量(相対値) グルコース輸送体 の細胞内分布 + 取3- B ホルモンEは、ランゲルハンス島から産生されるホルモンで血糖 調節に主要な役割を果たす。 ホルモンEが適切に働かなくなると、 高血糖状態が持続し、 糖尿病を引き起こ す。 血糖の調節には、グルコースを細胞内に取り込むグルコース輸送体の関与が知られている。 その中でも グルコース輸送体xとグルコース輸送体yが重要と考えられている。 これらのグルコース輸送体の血糖調節 における役割を調べる目的で、ホルモンEを受け取る細胞(細胞X) ホルモンEを産生する細胞(細胞Y) を用いて次の実験1・2を行った。 核 実験1 細胞X をグルコースを含む培養液で培養し、ホルモンEを添加する前と添加した後で、 グルコースの 取り込み量とグルコース輸送体xの細胞内分布を調べ、図3の(a) の結果を得た。 また、細胞Xのもつグル コース輸送体xの遺伝子を破壊した細胞Xを作製し、同様の実験を行い、図3の (b) の結果を得た。 (b) 4 3 2 物質E添加前 物質E添加後 物質E添加前 物質E添加後 「核 band グルコース濃度(g/ 15 図3 細胞Xと細胞Xにおけるグルコース取り込み量とグ ルコース輸送体xの細胞内分布 (a)は細胞X, (b) は細胞 X を用いた実験の結果を示す。 また、細胞内の黒丸 (●)はグルコース輸送体 x を表す。 10 原尿中 尿中 10 血しょう中のグル コース濃度(g/L) 15 問9 実験1の結果から、ホルモンEはどのようにして細胞Xによるグルコースの取り込みを調節していると 考えられるか。 簡潔に説明せよ。

回答募集中 回答数: 0
数学 高校生

要素の個数を正確に求めれません😭 求める過程を教えてください!

00000 重要 例題 10 グループの人数と集合 (3つの集合) 人は人のうち、漁市に行ったことのある人は5人であり市に行けたことのあ 人は13人市に行ったことのある人は30人であった人は市と日市に行 たことのある人はx人, A市と C 市に行ったことのある人は9人, B市とC のある人は3人, A市にもB市にもC市にも行ったことのない人は28人であ 市に行ったことのある人は10人であった。市との市に行った。 基本 3. p.275 STEP UP) った。このとき、xの値を求めよ。 CHART & SOLUTION 集合の応用問題 図をかいて 1 順に求める ② 方程式を作る ②の方針で解く。図において分割される各部分集合の要素の個数をかき込んでいく。 そして、 残った部分の要素の個数をα, bとおいて考える。 全体集合をひとし, A市, B市, C 市に行ったことのある人全体の集合 を,それぞれA, B, C とする。 右の図のように, 要素の個数 α, bを 定めると50 a+(x-3)+3+6=50 b+(x-3)+3+7=13 これらの式を整理すると a+x=44 a+b+x=45 1, 3 ・U (100) a+b+14+(x-3) +7 +6 +3 +28=100 b+x=6 28 b B(13) x-3 ( NUAR BUA DURUM) -A (50) a 3 7 2, ①から a=44-x ②から b=6-x これらを③に代入して整理すると-x+50=45 よって x=5 6 14 C(30) n(ANBNC) #5 個数をかき込んでいく。 n(A)=50 ←n (B) =13 n(U)=100 Smanj な 0. C PRACTICE 10 3 ある高校の生徒140人を対象に, 国語、数学、英語の3教科のそれぞれについて、得 意か否かを調査した。 その結果, 国語が得意な人は86人、数学が得意な人は40人 た。そして,国語と数学がともに得意な人は18人, 国語と英語がともに得意な人は 15 人,国語または英語が得意な人は 101 人, 数学または英語が得意な人は5人い また,どの教科についても得意でない人は20人いた。このとき、3教科のすべてが 意な人は 人であり、3教科中1教科のみ得意な人は人である。[名城

回答募集中 回答数: 0