学年

質問の種類

数学 高校生

写真見づらくて申し訳ないです。問10だけ解き方がわからないので教えていただきたいです。

18:27 KK 18:27✔ ← R6_15_nurse_mat... @ 回 2 問6~10の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び 解答用紙にマークせよ。 5G Doll 74 A 2次関数f(x)=-2x+2-1.g(x)=-2x+28-1 (a,bは実数) について,xの方程式(x)=0とg(x) = 0 はと もに実数解をもつものとする。 f(x)=0の2つの実数解をα. Bとし, g(x)=0の2つの実数解を するとき、以下の 問に答えよ。 問6 α =βとなるようなαの範囲はどれか。 (1) -2<<-1 (2) -2<a<0 (3) -1<<1 (4) 0<a<2 (5) 上の4つの答えはどれも正しくない。 問7a=Bで,aとBがともに12より大きくなるような範囲はどれか。 (1) -2<<1-17 (2) -1<<1-√7 (5) 上の4つの答えはどれも正しくない。 1-√7 (3) 1-17 <<1+/7 (4) 1+/7 <<1 4 問8 α = B.y=すなわちf(x)=0とg(x)=0がともに解をもち,ayであるようなαの組 (v.b)はどれか。 (1)(1.0) (2) (1.1) (5) 上の4つの答えはどれも正しくない。 (3) (0.1) (4)(1.1) (1) 座標平面上の2つの放物線y=f(x)とy-g(x)の交点が(1, -1)であるとする。 このようなaba <b>について。 との積の値はどれか。 (2)- (5) 上の4つの答えはどれも正しくない。 問10a< 6. <y <B< であるとき, a+bはどの範囲にあるか。 (1)&<a+b (2) B <a+b <お (3) y <a+b <B (4) α <a+by (5) 上の4つの答えはどれも正しくない。 2- 3 問11~15の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び、解答用紙にマークせよ。 平面上に正五角形ABCDE がある。 頂点 A. B, C, D, Eはアルファベット順に反時計回りに配置されているものど はじめに頂点に基石を置く。 そして1個のサイコロを振り、出た目の数だけ碁石を反時計回りに頂点から頂点へ る試行を繰り返す。 ただし、試行によって移動した碁石の位置は、次の試行を行うまで変えないものとする。 例えば、 試行で3の目が出たら、 碁石はA→B→C→Dと進みDに到達する。 また、 最初の試行開始後、 碁石がAに戻って Aを通過したとき、 碁石が1周したものとする。 このとき、1回の試行の結果 石がAまたはBにある確率をα. 1回の試行の結果 蕃石が1周する確率をとする。 Pe を2回繰り返した結果、 碁石が2周する確率を 試行を3回繰り返した結果 碁石がちょうど2周してAにある確率をd とする試行を回した。 03だけが右からしてAにある確定をおとする。このとき はいくら

回答募集中 回答数: 0
数学 高校生

(2)で黄色い付箋が貼ってあるところの「ここで〜となり」の範囲を確認している部分がなんそうなっているのかわかりません。後右ページ上から2行目から3行目の計算の仕方がわかりません

基礎問 110 面積(M) 放物線y=ax2-12a+2 (0<a</ ......① を考える. y=uv y 14042 ay2+y-2(2α+1)=0 ..(y-2) (ay+2a+1)= 0 .. y=2, −2-17= 201 a a -20-=-2-4 (1)放物線 ①がαの値にかかわらず通る定点を求めよ. (2) 放物線①と円 2+y2 =16・・・ ② の交点のy座標を求めよ. (3)a=1/12 のとき,放物線 ①と円 ②で囲まれる部分のうち、放物 精講 線の上側にある部分の面積Sを求めよ. (1)定数αを含んだ方程式の表す曲線が, aの値にかかわらず通る 定点を求めるときは、式をαについて整理して,aについての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが,yを消去すると の4次方程式になるので, 座標が必要でも,まず』を消去してyの2次 方程式にして解きます。 (3)面積を求めるとき,境界線に円弧が含まれていると, 扇形の面積を求める ことになるので, 中心角を求めなければなりません. だから, 中心〇と交点 を結んだ線を引く必要があります.もちろん、 境界線に放物線が含まれるの で,定積分も必要になります。 ここで, 2</1/12より-2-1/2-4となり,円+g=16 上の点 _1は不適よって, y=2 y=-2- (3)a=1/12 のとき,①は y=1/1 (1)(2), ①,②の交点は (A(2√3,2), B(-2√3, 2) AOB=120° だから 2√3 S=2.5" {2-(1-1)) は-4≦y≦4 をみたす y 4 2 B4.... A d.x +(x-4³. 120-4-4-sin 2) +(7.42.120 360 12/3 16 3 --+6]+6x-4√3 =24√3+12√3+1-4√3 6 16 =4√3+10% x -1 解答 (1) y=ar2-12a+2 より ポイント a(x²-12)-(y-2)=0 <aについて整理 これが任意のαについて成りたつので 2-12=0 y-2=0 x=±2√3,y=2 演習問題 110 よって, ① がαの値にかかわらず通る定点は (±2√3, 2) y=ax²-12a+2.....① (2) |r2+y2=16 ......② ②より, z=16-y だから, ①に代入して 境界に円弧を含む図形の面積は,中心と結んで扇形の 面積を考えるので、中心角が必要 2次関数 f(x)=x'+ax+b が条件f(1)=1, f'(1)=0 をみた すとする.また,方程式-2x+y-2y=0 が表す円をCとする. (1) α, bの値を求めよ. (2)y=f(x)のグラフと曲線Cで囲まれる部分の面積のうち,放 物線の下側にある部分の面積Sを求めよ. JmHe

回答募集中 回答数: 0