学年

質問の種類

数学 高校生

どうして積の偏角は偏角の和になるのですか?

C2-24 (372) 第5章 複素数平面 例題 C2.13 極形式の積・商 6(cos 80+isin 80) (cos 30-isin 30) **** の値を求め ( 星薬科大) 18 (1)2010 のとき. 例 cos 20+isin 20 た (2) α+β= のとき, cos a-isin a cos β-isin β cos βtisinβ cosa +isina の値を求めよ. 考え 考え方 解答 -0 (広島工業大) (1) cos30-isin30=cos(-30)+isin(-30) とし,積商の極形式を利用する (2)商の極形式が適用できるよう,分子を 十 COS |-isin=cos(-■) +isin(-■ とする. (1) cos30-isin30=cos(-30)+isin (-30) より, (2) 6(cos 80+isin 80) (cos 30-isin 30) cos 20+isin 20 6(cos80+isin80){cos(-30)+isin (-30)} cos 20+isin 20 =6[cos{80+(-30)-20}+isin{80+(-30)-20}] =6(cos30+isin.30)=6lcos(3×1) +isin (3×1)} =6(cos/0/+isinn)=6(1/23+12/21)=3√3+3 cosa-isina_cos(-a)+isin (-α) cos β+isin β cos βtisinβ 極形式のisin ■ の 前は+にする. 複素数の積 → 偏角は和, 複素数の商 偏角は差 0=7 を代入 18 解 平 =cos(-a-β)+isin(-α-β) =cos(a+β)-isin(a+β) ① 同様に, COS cosa +isina 商の極形式 cos(0)=cost sin(-0)=-sin A os β-isin β -=cos (a+β)-isin (a +β)...... ② を利用した. よって、①,②とα+B=1より ・だけ回転し、 cos a-isin a cos B-isin ẞ cosa+isina Focus cos β+isin β =2(cos/isin)=2(12-1)=1-3i (極形式の積の偏角)=(偏角の和) (極形式の商の偏角)=(分子の偏角)(分母の偏角) 注)(2)については分母を実数化して考えてもよい。

回答募集中 回答数: 0
数学 高校生

2)、実数解が存在するための条件に関する質問です。 (1)で出てきた不等式が満たされればxが実数解を持つ。そのために不等式をyの関数とみて、yの最大値が0以上となるときの条件が、(*)をみたすxの存在条件になるのは分かってるつもりなんですが(簡単に言うとyも変数であるからだ... 続きを読む

54 第2章 複素数と方程式 標問 22 判別式 a b を実数の定数とするとき r'+y'+axy+b(x+y)+1=0 について考える. 以下の問いに答えよ. (*) α-2<0 より 求める条件は -462+4(a+2)≦0 すなわち J SE 55 MOORCONS ES 1% 0=8 +0+ (0) 62≧a+2 2次方程式 ax2+bx+c=0(a≠0) の解は x= -b±√b2-4ac 2a であり, a,b,cが実数のとき,D=62-4ac の符号により (2) 2<a<2 とする.(*)をみたす実数x, y が存在するための条件をα b (1) 実数y を固定したとき,についての2次方程式(*)が実数解をもつため の条件をα by を用いて表せ . 研究 (岐阜大) を用いて表せ. →精講 (1) について式を整理します . (*)は,実数係数の2次方程式ですか 解法のプロセス (1) 実数係数の2次方程式が実 数解をもつ ら 実数解をもつ (判別式) ≧ 0 が成り立ちます。 (2) (1)で実数が存在する条件をおさえてある ので、あとは実数y が存在する条件を求めます。 (1)で得た不等式を」についての2次関数のグラフ として考えるとよいでしょう. 条件 -2<a<2 はこのグラフが上に凸であることを示しています. <解答 (1)yは固定されている. (*)をæについて整理すると 2+(ay+b)x+y+ by + 1 = 0 ↓ (判別式) 0 (2) 2次関数f(y) のグラフが 上に凸であるとき f(y) ≧0 をみたす実数が 存在する ↓ f(y)=0 の (判別式) 0 判別式をDとおくと, (*)が実数解をもつための条件は, D≧0 である. D=(ay+b)2-4(y2 + by +1) より (a²-4)y°+26(a-2)y+62-4≧0 ......① (2) 2<a<2 のとき,不等式① をみたすyが存在するための a, b の条件を求 めればよい. f(y)=(a²-4)y2+2b(a-2)y +62-4 とおくと,-2<a<2であるから a-4<0 であり,f(y) のグラフは上に凸である. したがって,f(y)≧0 をみたす実数yが存在するための a,b の条件はf(y)=0の (判別式)≧0 である. b2(a-2)-(a2-4)(62-4)≥0 ..(a-2){62(a-2)-(a+2)(62-4)}0 ..(a-2){-462+4 (a+2)}≧0 D>0 ⇔ 異なる2つの実数解をもつ D=0 ⇔ 重解をもつ D<0 異なる2つの虚数解をもつ といった具合に解を判別することができる. a,b,c のいずれかが虚数のときは,判別式により, 重解であるか否かの 判別は 62-4ac = 0, 0 により可能であるが, 実数解をもつか否かの判別 はできない. 注意が必要である. 例えば, 虚数を係数にもつ2次方程式 x2-2ix-2=0 の判別式をDとおくと D MC =(-i)-(-2)=-1+2=1 (D≠0 より重解でないことが分かる) 判別式は正であるが, 解の公式より x=i±√1=i±1 であり,実数解をもたない.さらに, 方程式 2-(1+i)x+i = 0 である。 は 2-(1+i)x+i=(x-1)(x-i) と変形されるから x=1, i と 実数解と虚数解が共存する. 虚数を係数にもつ2次方程式については演習問題 30-130-2 も参照 せよ. 標問 109では3次方程式の判別式についても扱っている. + y 演習問題 A 22 整数とし, 2次方程式(k+7)'-2(k+4)x+2k=0 が異なる2つ (中京大) の実数解をもつとき,kの最小値および最大値を求めよ. 第2章

回答募集中 回答数: 0