学年

質問の種類

数学 高校生

この問題で、どうしてk=2、a=2と出たのに実数解を持たないことがあるのですか? 注意を読んでもよくわからないので教えてください! それと、[2]で、k=-6と出たのに、kを代入して確かめるのですか? a=2になったのだからx=2が確定したわけではないのですか?

重要 例 102 2次方程式の共通解 171 ①のののの 2つの2次方程式 2x2+kx+4=0, x+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め、その共通解を求めよ。 指針 基本97 2つの方程式に 共通な解の問題であるから,一方の方程式の解を求めることができ たら、その解を他方に代入することによって、定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では、次の解法 が一般的である。 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a+ko+4=0 ①, a²+a+k=0 これをα, hについての連立方程式とみて解く。 ② ② から導かれる k=-α-a を ①に代入 (kを消去) してもよいが, 3次方程式と なって数学の範囲では解けない。 この問題では、最高次の項であるの項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=u とおく 共通解を x=α とおいて, 方程式にそれぞれ代入すると ①, a²+a+k=0.... ② 解答 2ω^+ka+4=0 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 よって k=2 または α=2 [1] k=2のとき 3章 11 1 2次方程式 αの項を消去。 この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 の判別式をDとすると D=12-4・1・2=-7 D0 であるから,この方程式は実数解をもたない。 ゆえに、2つの方程式は共通の実数解をもたない。 2つの方程式はともに x2+x+2=0となり,この方程式 数学の範囲では, x'+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x2-6x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 < α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 をもつ。 以上から k=-6, 共通解はx=2 注意 上の解答では, 共通解 x=α をもつと仮定してαやkの値を求めているから, 求めた値に対して, 実際に共通解をもつか, または問題の条件を満たすかど うかを確認しなければならない。 (at)

未解決 回答数: 1
物理 高校生

高校物理の電気の問題です (5)で解答のような形になるのがよく分かりません どういうポイントを意識して概形を書けばいいのでしょうか 解説おねがいします!!

88 13 静電気力と電場 B 107. 〈電気力線> 思考 応用問題 平面上において,距離[m] だけ離れた2点A,Bに電荷を固定したときの電気力線に ついて考える。点の座標を (12/20) 点Bの座標を (120) として次の設問に答えよ。 [A] A,Bに等しい正電荷Q [C] を置いた場合を考える。 +(1) xy平面上の電気力線のようすを, 向きも含めて図示せよ。 (2) Q が 5.0×10-12C, lが 6.0×10m とする。 y軸上で原点から 4.0×10mだけ離 れた点に静かに置いた大きさの無視できる荷電粒子が, 無限遠方に達したときの速度を 求めよ。ただし,荷電粒子の電荷を 1.6×10 -1°C, 質量を 9.0×10-31 kg とする。 また。 クーロンの法則の比例定数を 9.0×10°N・m²/C2 とする。 [B]点A,点BにそれぞれQ[C], [C] (Q>0)の電荷を置いた場合を考える。 図 (1) 電位が0 (無限遠方と同じ) となる点 (x, y) が満たす方程式を求めよ。 それはxy 平面 上でどのような図形を表すか。 (2)x軸上の点Pに電荷を置くと,それにはたらく力が0になった。 点Pの座標を求めよ。 記(3)点Bを中心とする円周上で, 電位が最も低い点はx軸上(ただしx>-1/2)にある。その 理由を説明せよ。 +(4) 点Aを出た電気力線は, 一部は点Bに, 一部は無限遠方に達する。 線分AB となす角 度0で点Aを出た電気力線が点Bに入るとき, 0がとりうる範囲を理由とともに答えよ。 ただし,電気力線のふるまいを考える際, 点Aのごく近くにおいては, 点Bに置いた電 荷からの影響は無視してよい。 図(5) 設問 〔B〕 (1) から設問 〔B〕 (4) の結果を参考にして, xy 平面上の電気力線のようすを 向きも含めて特徴がわかるように図示せよ。 なお,図には点A, 点 B, 点Pの位置をそ 〔東京大〕 れぞれ示すとともに, 設問 〔B〕 (1) で求めた図形を点線でかき加えよ。

未解決 回答数: 1