学年

質問の種類

数学 高校生

151. θはどこの角?と思ったのですがどこからこの場所(3.の解答の図の場所)であると分かるのですか?

236 43 030000 基本例題 151/3倍角の公式の利用 半径1の円に内接する正五角形 ABCDEの1辺の長さをαとし,0=2. 080057 (1) 等式 sin 30+ sin20 0 が成り立つことを証明せよ。 (2) cose の値を求めよ。 り (3) αの値を求めよ。 (4) 線分ACの長さを求めよ。 時間 最 p.233 基本事項 指針▷ (1) 30+20=2πであることに着目。なお, 0 を度数法で表すと 72°である。 (2) (1) の等式を2倍角・3倍角の公式を用いて変形すると (1) は (2) のヒント {0} COSOの2次方程式を導くことができる。 0<cos0 <1に注意して, その方程式を解く (3), (4) 余弦定理を利用する。 (4) では, (2) の方程式も利用するとよい。 解答 (1) 0から 50=2π このとき したがって (2) (1) の等式から sin 0 0 であるから, 両辺を sin0で割って 3-4sin20+2cos0= 0 3-4 (1-cos20) +2cos0=0 4cos20+2cos0-1=0 The ゆえに 整理して sin30=sin(2π-20)=-sin20 sin 30+sin 20=0 よって 3 sin 0-4 sin³ 0+2 sin 0 cos 0=0 0 <cos0 <1であるから (3) 円の中心を0とすると, △OAB において,余弦定理により AB²=OA²+OB²-20A OB cos 05(1-02005){( AC > 0 であるから AC= cos 0=1+√5 4 =12+12-2・1・1・ -1+√5-5-√5 4 a>0 であるから a=AB= (4) △OAC において, 余弦定理により AC2=OA2+OC2-20A・OC cos 20 30=2π-2050=30+20 5-√5 2 +2. −1+ 4 (*) =12+12-2・1・1・cos20=2-2(2cos20-1) =4-4cos20=4-(1-2cost)=3+2cos 2 -1+√5 (2) の(*)から。 5+√5 V 2 練習 11 ) 0=18° のとき, sin20 = cos30 が成り立つ 3倍角の公式 sin30=3sin0-4sin't 忘れたら, 30=28+0とし て, 加法定理と2倍角の 式から導く。 (3) BA (4) B C C 2751 a 1 1 0 D め ※加注 でに (1) 0=36°のとき, sin30= sin20 が成り立つことを示し, COS 36°の値を求め ある 次 sin co:

回答募集中 回答数: 0
数学 高校生

分からないのでどなたかお願いします🙇

〔2〕 表1は, 次郎さんの 「定期テストの結果」 の一部である。 次郎さんの学年には 全部で200人の生徒がおり、 結果欄には、テストの満点, 次郎さんの得点, 学年 全員の再点の平均値(以下、平均点)、次郎さんの前点の開発、20人中で 位が表示され、得点の分布圏には、学年全員の神経の度数分布が表示されている。 ただし、同じ得点の生徒は同じ順位とし、1位の生徒の人数が(n=1)の場合 その次に高い得点の生徒がいれば,その生徒の順位はx+n (位) とする。 得点の分布点 結果 満点(点) 得点(点) 点 平均 偏差値 順位 (位) 96~100 91~95 86~90 81~85 76~80 71~75 66~70 61~65 56~60 英語 100 74 65 48 56 136/200 47 / 200 1 0 10 4 18 12 表 1 100 68 71 29 32 32 25 11 10 11 15 26 27 20 26 (数学Ⅰ・数学A 第2問は次ページに続く。) この 「定期テストの結果」 を見て、 次郎さんと兄の太郎さんが話している。 次郎: 今回の国語のテストでは, 100位以内になることが目標だったんだけど, 残念。 太郎 その目標は、学年全員の得点の (1) 以上の点をとることと同じだね。 表1からわかるのは、今回はタチ点をとっておけば確実に目標を達 成できたということだね。 については,最も適当なものを、次の⑩~③のうちから一つ選べ。 最頻値 また、 ① 中央値 ②平均値 ③ 代表値 タチに当てはまる最小の整数を求めよ。 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0