学年

質問の種類

物理 大学生・専門学校生・社会人

分からない問題が多いので解説お願いします 明日テストなので早めに教えていただけると助かりますm(_ _)m

(1) 静止している人の正面前方から,960Hzの振動数のサイレンを鳴らす緊急自動車が20m/s の速さで近づいてきている。 静止している人に聞こえるサイレンの音の波長入 [m] と振動数 f [Hz] をそれぞれ求めなさい。 ただし, 音速は340m/s とする。 5. (2) 長さ0.15mの閉管の管楽器に生じる基本振動の波長[m] を求めなさい。 また,節と腹の場 所がわかるように、 右下図に基本振動の定常波を描きなさい。 (3) 音圧レベルが55dBの音の強さ 155 と, 35dBの音の強さ135の比 4. 運動エネルギーの次元を次元式の表記 [MLTY] により答えなさい。 a fi B=2 r = -2 (MaLp Th) CM'L² 7-2 光に関する以下の各問いに答えなさい。 Iss 135 閉管の管楽器 を求めなさい。 (1) 空気中において, 屈折率 n =√3のガラス面に光が入射角 60° で進んだ場合の屈折角 [°]を求めなさい。 また, ガラス中の光の速さ v[m/s] を求めなさい。 ただし、空気中 の光速は, 真空中と同じであるとして答えなさい。 ⑨:30°V=2.0x108 m/s (2) 屈折率 n = 1.5の液体の液面から 30cmに沈んでいる物体は,見かけ上では,液面から何 cmの深さに見えるのかを答えなさい。 (3) 可視光線よりも波長が短く振動数が大きな光の名称を答えなさい。 紫外線 (4) ある透明な液体の臨界角が45°であった。 この透明な液体の屈折率 n を求めなさい。

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

習っていないところが多くて分からないので解説お願いします🙇‍♂️

(1) 静止している人の正面前方から,960Hzの振動数のサイレンを鳴らす緊急自動車が20m/s の速さで近づいてきている。 静止している人に聞こえるサイレンの音の波長[m]と振動数 f [Hz] をそれぞれ求めなさい。 ただし, 音速は340m/s とする。 5. (2) 長さ0.15mの閉管の管楽器に生じる基本振動の波長 入 [m] を求めなさい。 また, 節と腹の場 所がわかるように、 右下図に基本振動の定常波を描きなさい。 155 (3) 音圧レベルが55dBの音の強さ 155 と, 35dBの音の強さ 135の比 135 4. 運動エネルギーの次元を次元式の表記 [MLTY] により答えなさい。 (Ma LE Tr) a ²1 B=2 CML ²7-² r=-2 光に関する以下の各問いに答えなさい。 閉管の管楽器 を求めなさい。 (1) 空気中において,屈折率 n = √3 のガラス面に光が入射角 60° で進んだ場合の屈折角 [°] を求めなさい。 また, ガラス中の光の速さ [m/s] を求めなさい。 ただし, 空気中 の光速は、真空中と同じであるとして答えなさい。 ⑨:30°V=2.0x10°m/s (2) 屈折率 n = 1.5 の液体の液面から30cmに沈んでいる物体は, 見かけ上では, 液面から何 cmの深さに見えるのかを答えなさい。 (3) 可視光線よりも波長が短く振動数が大きな光の名称を答えなさい。 紫外線 (4) ある透明な液体の臨界角が45° であった。 この透明な液体の屈折率 n を求めなさい。

回答募集中 回答数: 0
物理 高校生

問3で、解答のマーカー部がわかりません。よろしくお願いします。

次に、図1の振動板を取り除き, ついたての隙間をふさぐ。 そして, ついたて から20cm離れた点 A の位置で水面に浮かべた小球を振動数 5.0 Hz で上下に振 動させると,点Aから波長10cmの円形波の水面波が発生した。 十分に時間が 経過すると,水面上には、ついたてに入射する波とついたてで反射した波が弱め 合う点を連ねた曲線が現れた。 図3中の実線(-) と破線 (-----) は,点Aを 中心に広がる波の、ある瞬間の隣り合う山と谷の波面をそれぞれ表している。た だし、波がついたてで反射する際に波の振幅および位相は変わらないものとする。 また、水面で発生した波は正弦波と考えてよいものとし、水槽内での波の減衰や 水槽の壁面での反射は無視して考えるものとする。 水面波 ① 1 ⑤ 5 ------ 2 ------ 66 ついたて 図 3 B 10 問3 ついたてに垂直で点Aを通る直線がついたてと交わる点をBとし (図 3), 水面上に波が弱め合う点を連ねた曲線が現れているときを考える。 点Aと 点Bの間を通る弱め合う点を連ねた曲線の本数として最も適当なものを 次の①~⑧のうちから一つ選べ。 ただし、 弱め合う点を連ねた曲線が点A または点Bを通る場合には,それらの曲線は除いて考えるものとする。 17 本 20cm n ③3 Ⓒ7 15 44

回答募集中 回答数: 0
物理 高校生

振幅が何故こうなるのか分かりません

66 波の式 軸の原点Oにある波源Sか 振動数f, 波長の波が左右 に出ている。 S から右に距離L だけ離れた所に壁Rがあり,波 はここで振幅を変えずに固定端 反射される。Sから出る波の0 における変位y, 時刻t に対して y = Asin 2nft と表されるものとする。 (0 ≤ x ≤ L) (2) 壁からの反射波の式y2 をx, tの関数として表せ。 (x≧L (1) Sから壁に向かう入射波の式をx,tの関数として表せ。 66 波の式 COS @= R (3) SR間で,合成波の変位は次式のように表される。 y = 2A sin (イ) (ア), (イ)を埋めよ。 また, 常に y = 0 となる位置xを整数 n = 0, 1,2…)を用いて表せ。 (4) S の左側に生じる波 (合成波) の振幅を求めよ。 また, 振幅が最大 となるときのLを入, n で表せ。 (東京理科大) 187 Level (1) ★ (2), (3) ★ (4) ★★ Point & Hint 力学では単振動の式は y=A sin wt として扱うことが多い。 2π の関係がある。 T 点0で起こることは, 3 4tの時間を隔てて位 置xでくり返される。 (1) 波が原点Oから位置 xまで伝わるのに要す る時間⊿t をまず調べる。 次に, 位置 x で時刻 tのときの変位は, 0 でのいつの時刻の変位と 等しいかを考える。 (2) (1)の結果から壁 R でのy2 の時間変化がわかる。 そこで, R から位置 xまで伝 わる時間を調べる。考え方は (1) と同じこと。 a IB cosa FB (3) 三角関数の公式 sinα土sinβ=2sin@th COS 2 (4)まず,Sから直接に左へ向かう波の式をつくる。 を用いる。

回答募集中 回答数: 0
物理 高校生

(3)で、 ・波面でどのように定常波ができるのか ・なぜ節線は定常波の節を通ることになるのか ・なぜABの中央が腹になるのか 詳しく説明していただきたいです。

基本例題46 波の干渉 物理 振幅が等しく, 波長 2.0cmの波が出ている。 図の実 水面上の 6.0cmはなれた2点A,Bから,同位相で 線はある瞬間の山の位置, 破線は谷の位置を表してい る。 波の振幅は減衰しないものとする。 イ 2つの波が弱めあう点を連ねた線 (節線)をすべ て図中に描け。 また, 節線は全部で何本あるか。 指針 (1) 弱めあう場所は, 実線(山) と 破線(谷)が重なる点であり, 節線はそれらを連 ねたものとなる。 (2) APとBP の距離の差が, 半波長の偶数倍で あれば強めあい, 奇数倍であれば弱めあう。 (3) 線分AB上では、互いに逆向きに進む波が 重なりあい, 定常波ができ ている。 解説 (1) 節線は, (2) 点Pはどのような振動状態にあるか。 AP=8.0 cm, BP=5.0cm とする。 節線が線分 AB と交わる点は, Aから測ってそれぞれ何cmのところか。 山と谷が重な る点を連ねた 線であり,図 P. 1 14.波の性質 171 基本問題 348, 349 のようになる。節線の数は6本である。 (2) AP-BP=3.0cmであり, 半波長1.0cm の 3倍(奇数倍)である。 したがって, P あうため、振動しない。 (3) 線分AB上には定常波ができており, 節線 は AB上の定常波の節を通る。 ABの中央の点 は腹であり,腹と節の間隔は波長の1/4 (0.5 cm), 節と節の間隔は半波長 (1.0cm) である。 これから 求める場所は, Aから 0.5, 1.5, 2.5, 3.5, 4.5, 5.5cmのところとなる。 基本例題47 波の屈折 物理 図のように,波が媒質I から媒質ⅡI へ進む。媒質 Ⅰ, ⅡI の中を伝わる波の速さは、それぞれ2v, vである。 面AB Q Point A. Bは同位相で振動しているので, A,Bを結ぶ線分の中点は,定常波の腹になる。 ?? I 基本問題 351 B C

回答募集中 回答数: 0
物理 高校生

高校物理過渡現象の問題です。 (6)の考え方は一通り理解できたつもりなのですが、二つのコンデンサが等電位になっているのに、電流が流れ続けるのが少し引っかかりました。図cを見る限り、電位差がなくなった後、コンデンサ3に電流が流れ込みいっぱいになったら今度はコンデンサ2に電流が... 続きを読む

法則ⅡIより / Vo+VL-0=0 よって VL=-12/Vo *B コイルに加わる電圧の大きさは 1/2vo AIL Vo (5) VL-24 だから12/2014/1 4t よって 12 4t 2L また、自己誘導が電流の流れを妨げるから、 電流は 0 AIL (6) コンデンサー C3 に流れこむ電流Icの変化は, 電気振動で示されるから, ス イッチ S2 を閉じた時刻を t=0, 電流の最大値を IM として, 図cのように表 される。 直列回路より電流は共通であるから, C3 に流れこむ電流が最大の とき, コイルに流れる電流も最大となる。 電流が最大のときは電流変化が 0 よりコイルの電位差が0であるから ※C, C2, C3 の電圧は等しく、その電圧 をVとすると, 電気量の保存より 12/23CV +0=CV+CV よってV=1/2vo ゆえに,C』に蓄えられている電気量Q3は Q321/Cro エネルギー保存より 1 c. (v.)² +0=1 c · (v.)³×2+LIM² LIN²=12/2CV32 よってIw=1/12/0 C 4 L L 12/12/10 =1/12/0 +CV. C₂ 1/12 Cro 図 d Ic IM O m VL 図 b ◆B コイルの左側が高電 位となる。 12/12/0 o(E C30 +CV C2 -CV 0 C3 *C V₁=-Lt AIL 4t fi 図 c AIL -= 0 だから Vi=0 L IM 図e C3 +CV V: -CV 物理重要問題集 151

回答募集中 回答数: 0
物理 高校生

物理の波の範囲です。テスト前でよくわからないので詳しく説明お願いします。

9 xの負の向きに速さで進む振幅 A, 波長入の正弦波 を考える。 図1は、ある時刻での正弦波の形を示したも ので、媒質の変位」は次の式で表される。 (火) y=- Asin kx => y=- A Sin 2TL (X) ここで, kは正の定数である。 以下の文中の空欄を埋め よ。 π (1) この波は位置 x= で谷となるが,この谷から入 2k の長さだけ移動した位置で再び谷になる。 このことか らんを入で表すと X= A=/01C, k = 7 21- となる。 (2) この時刻から時間が y=イ となる。 この正弦波がx=0で固定端反射をする場合を考える。 反射波は入射波と振幅の等しい正弦波としての正の向 きに進んでいる。 図2は時刻での入射波のみの形を示 したもので, x≧0の領域で y=-Asinkx 正弦波 ÄÄ 図1 と表される。 (3) 時刻 t での反射波をkを用いて式で表すと y=ウ X-22² k 周期だけ経過したときの波を, k を用いて式で表すと ワー となる。 (4) 入射波と反射波が重なりあって定常波ができている 時刻での位置 x= における定常波の変位は, 2k=27 k= Yo Asin (SY ↑ 2F 2. I (5) この時刻から 1/12周期だけ経過したときの,位置 x= オである。 固定端 入射波 |である。 x べ 図2 21 x における定常波の変位は, [佐賀大]

回答募集中 回答数: 0