学年

質問の種類

数学 高校生

なぜ二つの室の圧力が同じなのでしょうか! よろしくお願いします。

9月21日 8限目 演習問題 |1 2015 九大 図のように、 断熱材でできた密閉さ れた容器が隔壁により第1室と第2室 に仕切られている。 隔壁は各室の気密 性を保ちながら容器内を摩擦なくなめ らかに動く。 また, 隔壁を固定するこ とも可能である。 隔壁の中央部は熱を 通す素材で、それ以外の部分は断熱材 でできている。さらに, 中央部は開閉 可能な断熱カバーでおおわれており, このカバーの開閉により両室間の熱の移動を制御できる。すなわち, 断熱カバーが閉じてい いれば、両室の間に熱の移動は無く, 断熱カバーが開いていれば,両室の間でゆるやかなB. 熱の移動が可能である。 隔壁中央部の熱容量はないものとする。 第1室内にはヒーターが 設置されており, 第1室の気体を加熱することができる。 容器 第1室 ヒーター 隔壁 断熱カバー 第2室 隔壁中央部 IPA (l). 3 第1室と第2室に,気体定数をRとして定積モル比熱が 22 R である同種の単原子分子 理想気体を封入し, 次に述べるような状態変化を行った。 なお, 問題中の温度はすべて絶 対温度で与えられている。 初めの状態 A では, 隔壁は静止しており, 断熱カバーは閉じている。 このとき, 第1 室の気体の体積, 温度,圧力はそれぞれVA, TA, PA であり, 第2室の気体の体積, 溫 度,圧力はそれぞれ 3VA, TA, PAであった。 (1) 第1室の気体の物質量(モルを単位として表した物質の量) , VA, T'A' PA, R の 中から必要なものを用いて表せ。 状態 A から, 隔壁を固定し断熱カバーを閉じたままヒーターによりゆっくり第1室の 気体を加熱したところ, 第1室の気体の温度が2TA となった。 この状態を状態 B とする。 (2) 状態 A から状態 B への変化の間にヒーターが第1室の気体に加えた熱量を, VA, TA,PA, R の中から必要なものを用いて表せ。 次に, 状態 B から隔壁を固定したまま断熱カバーを開け, しばらく待ったところ, 熱 平衡に達した。 この状態を状態Cとする。 (3) 状態Cにおける第1室, 第2室の気体の温度を, VA, TA, PARの中から必要な ものを用いて表せ。 (4) 状態 B から状態 C への変化の間に第1室から第2室に移動した熱量を, VA, TA, PA, R の中から必要なものを用いて表せ。 (5) 状態Cにおける第1室の気体の圧力, 第2室の気体の圧力を、 それぞれVA, TA, PA, R の中から必要なものを用いて表せ。 再び状態 A から考える。 以後, 隔壁は自由に動けるとし, 断熱カバーは閉じている。 ヒーターによりゆっくり第1室の気体を加熱し、 総量 3PAVA の熱を加えた状態を状態 Dとする。 (6) 状態 A から状態 D への変化の間に生じた第1室, 第2室の気体の内部エネルギーの 変化をそれぞれ 4U 1, 4U2 とする。 AU1+4U2 を, VA, PA を用いて表せ。 (7) 状態 D における第1室の気体の体積をVD とし, 状態 D における第1室, 第2室の 気体の圧力をpp とする。 4U を, VA, PA, VD, PD を用いて表せ。 (8) PD を, VA, TA, PA, Rの中から必要なものを用いて表せ。 なぜ? ださい

未解決 回答数: 1
物理 高校生

赤線のところが分かりません。なぜ254~314s間に供給された熱量を考えるんですか?その後に「水と容器の温度が0℃から20℃まで上昇する」と書いてあるならそれなら32sから0℃なんだから時間の区間は32sから314sですよね?

発展例題23 氷の比熱 質量 400gの氷を熱容量120J/Kの容器に入れ,容 器に組みこんだヒーターで熱すると,全体の温度は 図のように変化した。 熱は一定の割合で供給され, すべて容器と容器内の物質が吸収したとし、水や氷 の水蒸気への変化は無視できるものとする。 また, 水の比熱を4.2J/ (g・K) とする。 (1) ヒーターが供給する熱量は毎秒何Jか。 (2) 氷1gを融解させるのに必要な熱量は何Jか。 (3) 氷の比熱は何J/ (g・K) か。 指針 (1) 254s 以降の区間では、 氷はす べて水に変化している。 水と容器の温度上昇に 必要な熱量から, ヒーターが毎秒供給する熱量 を求める。 E (2) 温度が一定の区間 (32~254s) では,供給さ れた熱量はすべて氷の融解に使われる。 これか ら, 氷1gの融解に必要な熱量を求める。 (3) 氷と容器の温度が上昇する区間 (0~32s) で, 温度上昇に必要な熱量から, 氷の比熱を求める。 解説 (1) 水と容器をあわせた熱容量は, 400×4.2 +120=1.8×103J/K 254~314sの間に供給された熱量で, 水と容器 の温度が0℃から20℃まで上昇するので, ヒー ターが毎秒供給する熱量をQ〔J〕 とすると, ↑ 温度 [℃] 201 0 -20 /32 254314 時間 (s) (1.8×103)×(20-0)=Qx (314-254) Q=6.0×102J (2) 32~254sの間に氷はすべて融解した。 氷1 gを融解させるのに必要な熱量をx [J] とすると, 400× x = ( 6.0×102) × (254-32) 3/9070 x=3.33×102 J 3.3×102J (3) 氷の比熱をc[J/ (g・K)〕 とすると, 氷と容器 をあわせた熱容量は, 400×c +120〔J/K] 0~32s の間に供給された熱量で, 氷と容器の温 度が-20℃から0℃まで上昇するので, ( 400×c +120) x{0-(-20)} =(6.0×102) × ( 32-0) c=2.1J/(g・K)

回答募集中 回答数: 0