学年

質問の種類

数学 高校生

マーカーを引いた部分が求められる理由を教えてください。 公式などがあるのでしょうか?💦

AA A3 A2 基本 例題 29 無限等比級数の応用 (2) XOY [=60°] の2辺 OX, OY に接する半径1の 円の中心を とする。 線分00 と円0 との交点 を中心とし、 2辺OX, OY に接する円を Oとする。 以下、同じようにして,順に円 03, 0, 00000 Y O₁ 59 A1 253 基本事項 21 を作る。このとき,円 01,02, 求めよ。 X ・・・・・・ の面積の総和を 60° 基本28 2章 4 総和, CHART & SOLUTION 図形と極限 無限級数 用いると,次 えることが +A2A3 2番目と (n+1) 番目の関係を調べて漸化式を作る ① 00+1の半径をそれぞれn, n+1として, n と n+1の関係式 (漸化式) を導く。直角 三角形に注目するとよい。 そして, 数列{r} の一般項を求め, 面積の総和を無限等比級数 の和として求める。 解答 Y 円0mの半径,面積を,それぞれ回 S とする。 円O は 2 辺 OX, OY に 接しているので, 円 0 の中心On は, 2辺 OX, OY から等距離にある。 27 2+1 +...... ar) よって,点0m は XOY の二等分線 上にある。 O.. +1 X H S 30°+1 (0, ar3) +....... +……) をαと JJR これとOm0n+1=00-00n+1 から rn=2rn-2rn+1 ゆえに,XOO=60°÷2=30°であ るから 00=2rn 円とOX との接点 をHとすると, OOH は3辺が 2:1:√3 の からの直角三角形。これ 着目して,n+1 rn 1 きる ゆえに rn+1= またn=1の関係を調べる。 2 n-1 n-1 60° よって- (1/2) したがってSx (1) 30° 00 ゆえに,円 01, O2, の面積の総和 ΣSn は, 初項 π, 公 n=1 比 1/3の無限等比級数である。 141 であるから,無限等 比級数は収束し、その和は π 4 1-1 (初) (公) の PRACTICE 29 3 正方形 Sn, 円 Cn (n=1, 2,.....) を次のように定める。 Cm は Sm に内接し, Sn+1 は 1である。 Cn に内接する。 Sの1辺の長さをαとするとき 円周の総和は [ [工学院大 ]

回答募集中 回答数: 0
数学 高校生

1番よくわからないです

目の方程式を 基本84 =-4x+5 ] を満たす の例 [2] を満たす 円の例 半径 2 (t,s) が直線 +5 上にあるか -4t+5 ⇔A=±B がx軸の上側 がx軸の下側 OST x2+y2+bx+my+n=0の表す図形 日本 例題 87 (1) 方程式x2+y2+6x-8y+9= 0 はどのような図形を表すか。 方程式 を求めよ。 x2+y2+2px+3py+13 = 0 が円を表すとき、 定数の値の範囲 p.138 基本事項 1 CHART & SOLUTION arty'+lx+my+n=0の表す図形x, yについて平方完成する (²+2+2 x + ( ₂ ) } + {y² + 2. 2 y + (7) } − ( 2 ) + (2) -- ((x+ 2) + (x + 2)² = - 1²+ m²-4n 4 14+ m²-4n>0 DEZ, 40(-21/1, の形に変形。 m 中心(1/21)半径 (1) ゆえに (x+3)²+(y−4)²=16 よって, 中心(-3,4), 半径4の円を表す。 (2) (x²+2px+p²) よって したがって (x2+6x+9)+(y²-8y+16)=9+16-9 x+p²) + {y² + 3py + ( ²₁ p)²}=p² + ( 2 P) ² - 13 121= (x+p)² + (y + 3 p)² = 13²-13 ゆえに 4 13 この方程式が円を表すための条件は p²-4>0 ゆえに in として, √1²+ m²-An 2 p<-2,2<p p²-13>0 (p+2)(p-2)>0 の円を表す。 HINFORMATION x2+y2+bx+my+n=0の表す図形 方程式x2+y2+bx+my+n=0 が円を表さない場合もある。 例1 方程式x2+y^2+6x-8y+25=0 の表す図形 変形すると (x+3)+(y-4)²0 ←右辺が 0 両辺にx,yの係数の半 分の2乗をそれぞれ加 える。 ← x,yについて それぞ れ平方完成する。 実数の性質 A,Bが実数のとき A2+B2≧0 143 これを満たす実数x, y は, x= -3, y=4 のみである。 よって、方程式が表す図形は 点(-3, 4) 例2 方程式x2+y^+6x-8y+30=0 の表す図形 変形すると (x+3)+(y-4)²=-5|←右辺が負 これを満たす実数x, y は存在しない。 よって, 方程式が表す図形はない。 等号は A=B=0 のときに限り成立。 PRACTICE 87② 10 方程式x^2+y2+5x-3y+6=0 はどのような図形を表すか。 1=2-1 (2) 求める 方程式x2+y2+6px-2py+28p+6=0 が円を表すとき,定数の値の範囲を

回答募集中 回答数: 0