学年

質問の種類

理科 中学生

問題の解き方が全く分かりません。 誰かわかる方教えていただきたいです!宜しくお願い致します🙇🏻‍♀️ ❸次の実験を行った。あとの問いに答えなさい。 ① 図1のように、塩化銅水溶液の入ったビーカーに、発泡ポリスチレン の板にとりつけた炭素棒Aと炭素棒Bを入れ、炭素棒Aが陽... 続きを読む

3 次の実験を行った。 あとの問いに答えなさい。 [実験〕 ① 図1のように,塩化銅水溶液の入ったビーカーに, 発泡ポリスチレン の板にとりつけた炭素棒Aと炭素棒Bを入れ,炭素棒Aが陽極(+極) に、炭素棒Bが陰極 (-極) になるようにして, 0.25 Aの電流を流した。 ② 10分ごとに電源を切って,炭素棒をとり出し, 炭素棒の表面につい ていた金属の質量を測定した。 電源装置 ビーカー (愛知) 電流計 たろも 極 ③①と同じ塩化銅水溶液を用意し,電流の値を0.50 A, 0.75Aに変え,炭素棒A- それぞれについて②と同じことを行った。 1 発泡ポリス チレンの板 炭素棒B 質 塩化銅水溶液 (1)実験の①では,一方の炭素棒付近から気体が発生した。 炭素棒A,Bのどちらから気体が発生したか, 記号で答えよ。 また, 発生した気体は何か, 化学式で書け。 (2)図2は,実験のうち, 0.25 A と 0.75Aの電流を流した2つの実験 ご答え について,電流を流した時間と炭素棒の表面についていた金属の質量 との関係をグラフに表したものである。 0.25 A, 0.50 A, 0.75 Aの 電流をそれぞれ同じ時間流したときに, 炭素棒の表面についていた金 属の質量を合計すると1.5gであった。 このとき, それぞれの電流を 流した時間は何分か。 最も適当なものを,次のア~コから選び, 記号 で答えよ。 図いた金属の質量 2 炭素棒の表面について 図2 い炭 1.0g 0.8 0.6 0.4 0.2 (g) 0 ア 30分 イ 40分 ウ 50分 力 80分 キ 90分 エ 60分 オ 70分 ク100分 ケ110分 コ 120分 20 40 60 80 100 電流を流した時間 [分] (1) 炭素棒 気体の化学式 (2) 化学変化とイオン 2

回答募集中 回答数: 0
数学 高校生

(2)の問題で平方完成をする所までできるのですが、 最小値の求め方とその時のaの値の求め方が分からないです💦

令和6年度 夏期補習 数学(標準) チャレンジ演習② 次の問題について, 太郎さんと花子さんが会話している。 会話文を読んで以下の問いに答 えよ。 [問題] 実数 αに対し, f(x)=x2-2(3a²+5a)x+18a +30a' + 49a2+16 とおく。 αが実数全体を動くとき 2次関数y=f(x) のグラフの頂点のy座標の最小値 を求めよ。 (1) 太郎: 計算すると ア 2+ イ ウ a, 4 la^+ エオ a2+カキが頂点 の座標だとわかったよ。 花子: 頂点の座標が4次式だよ。 どうやって最小値を求めればいいんだろう。 太郎: t=ax とおけば頂点のy座標は2次式になるから,解けるはずだよ。 花子:本当だ。 ウエオ+ カキについて考えればいいんだね。 太郎: 平方完成してみると最小値は0になる(A)ことが分かるね。 花子 : 私は違う答えになったけど・・・。 ~ カキに当てはまる数を答えよ。 (2) 太郎さんの下線部(A) の発言は,誤りである。 正しい最小値はクケであり,その ときのαの値は コ である。 (3)(i) 次の①~③の関数のうち, 下線部(X)のように置きかえることで 太郎さん・花子さんと同様の方法で頂点のy座標をtの整式で表せるものを1つ選 なお,そのような関数は複数あるが解答は1つでよい。 サ © y= −x²+2a²x−4a²+8 ① y=2x2+8ax+5a+2a +4 ② y=x2-2ax+3a-a3+2 ③ y=x2-2ax-a-a2-3 (ii) サで選んだものについて、頂点のy座標の最小値を次の①~⑦のうち 1つ選べ。ただし,最小値がない場合は ⑦を選べ。 0 0 0 1 ② 2 ②③ 3 4465 60

回答募集中 回答数: 0
数学 高校生

数Bの質問です! 56の(2)の答えの線が引いてあるところまでを わかりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

解答 漸化式を変形すると bn=an-3 とすると bn+1=2bn したがって, 数列 (a)の一般項は,,=bn+3 より =-2"+3 bn=-2.2"-1=-2" よって、 数列 (b)は公比2の等比数列で、初項はb=a-3=1-3=-2 数列 (b.) の一般項は b=a-cとすると bn+1=2bn ae1-3=2(1-3) c2c-3 を解くと3 56 (1) 54,+2から 0.2-50+1+2 よって +2 +1 (5a..+2)-(5a,+2) ゆえに すな =5a1-5a, 5(a...) an= (2) b=a+1-amから ba1= @s+2@s よって, (1) で導いた等式から ba+1=5b 58 an+ ここで、2=54,+2=5・1+2=7より ■ 練習 55 (1) a₁=5, an+1=3an-4 次の条件によって定められる数列{a} の一般項を求めよ。 01=2, Qn+1=9-24 b1=0z-a=7-1=6 数列 (b.) は初項 6. 公比5の等比数列であるか ら b.-6.5-1 b.= (3) α1=1, n+1=/man+2 4 a=1, an+1=4an+1 50 よって, #2のとき この 練習 56 3 α=1, an+1=5a+2で定められる数列 {an} がある。 (1) an+z-an+1=5 (+10) を導け (2) bn=a+1-an とする。 数列 {bm) および数列 (an) の一般項を求めよ。 ゆえに -1 a=a+6.5-1=1+65-1 また 1-(5-1) よっ =1+6.. 5-1 3(5-1-1) =1+- 2 数 ゆ an 2 4.-(3-5-1-1) 初項は =1であるから,この式は"=1のと きにも成り立つ。 59 59 n=2のとき したがって, 一般項は a =1/12(3-5-1-1)

回答募集中 回答数: 0
数学 高校生

なぜこの計算をするのかが分かりません 詳しく教えてください🙏

301 質を求めよ。ただし ■西大] 基本186190 つるから場合分けを 境目となる。 (2a) (2a)3-3a(2a)+5a³ Ba³-12a³+5a³ 000192 区間全体が動く場合の最大・最小 ①のののの (x)=10x+17x+44 とする。 区間 asxsa+3 におけるf(x)の 最大値を表す関数g(α) を, αの値の範囲によって求めよ。 SMART QTHINKING 最大・最小 グラフ利用 極値と端の値に注目 曲が変わると 区間 a≦x≦a+3 が動くから, αの値によって場合分けする 目はどこになるだろうか? 場合分けの境目はどこ 基本 190 yef(x) のグラフをかき, 幅3の区間 a≦x≦a+3 を左側から移動させながら考えよう。 大値をとるxの値が区間内にあるか, 区間の両端の値(α) f(a+3) のどちらが大 きいかに着目すればよい。 f(a)=f(a+3) となるαの値も境目となることに注意。 (x)=3x-20x+17=(x-1)(3x-17) a+3 <1 すなわち a < 2 のとき 17 x (x) = 0 とすると ... 1 17 x=1, 増減表から,y=f(x) のグラフは右下のようになる。 3 3 f'(x) + 0 - 0 + f(x) 極大 極小 小値をとるxの値 y=f(x)| 44 間に含まれる場合 g(a)=f(a+3)=(a+3)3-10(a+3)2 + 17 (a +3) +44 =a3-a²-16a+32 [2] at 3≧1 かつ α <1 すなわち -2≦a <1 のとき g(a)=f(1)=52 21 のとき,α)=f(a+3) とすると 整理すると a10a2+17a+44-a³-a2-16a+32 9a2-33a-12=0 最小 2a 3 x って (3a+1)(a-4)=0 a≧1 から a=4 17 3 7.1 直をとるxの値 [3] 1≦a <4 のとき g(a)=f(a)=a-10a² +17a+44 15.6 含まれない場合 [4] 4≦a のとき g(a)=f(a+3)=α-α-16a+32 4 [2] [1] y y=f(x); y y=f(x); [3] y | y=f(x); [4] y=f(x) 52 27 最小 Fa+3 32a x O 0. a1a+317 x 3 a a+3 6章 21 関数の値の変化 0 a. La+3 4 7 。g(a) [岡山大〕 a=4 のとき, 最大値を異なるxの値でとるが, xの値には言及していないので, 4≦α として [4] に含めた。 PRACTICE 1926 す関数 g(α) を αの値の範囲によって求めよ。 /(x)=2x-9x2+12x-2とする。 区間 a≦x≦a+1 における f(x) の最大値を表

回答募集中 回答数: 0