学年

質問の種類

数学 高校生

【3】アだけ自力で出来ました。ほかは全部分からないので、1箇所だけでもいいので解説お願いします。

2021 推薦 〔1〕次の # にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 (1) 1+√3のとき、a-2a-2の値は ア @totata'+α の値は イ + ウ であり。 √3である。 (2)+1,定数aが Ises1のとき.√x+2a+√x-2a= る。 (3)を整数と整数部分が5であるとき,の値は | オ (1) α, bを定数とする。 関数y=ax-4ax+b(-1≦x≦3)は 最大値が7. 最小値が−2である。 a>0のとき,a= ア あり.a<0のとき、b= ウ である。 であ 〔2〕次の にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし、 解答が分数となる場合は既約分数で答えること。 b= である。 で (2) a, kを定数とする。 2次関数y=2x²-4x+8のグラフをx軸方向に2,y 軸方 向にだけ平行移動すると、 2次関数y=2x²-12ax+6a+6のグラフに重なると k= オ である。 I 〔3〕を定数とする2次方程式x-2ax+a+2=0が異なる2つの実数解をもつとき、次 にあてはまる数を求め、 解答のみを解答欄に記入しなさい。 ただし、 解答 が分数となる場合は既約分数で答えること。 の (1) この2次方程式の2つの実数解がともに-1<x<3の範囲にあるときのとり 得る値の範囲は 7 <a<- <号である。 (2) この2次方程式の2つの実数解のうち、一方のみが-1<x<3にあるとき,の とり得る値の範囲はa < ウ Saである。 (3) この2次方程式の2つの実数解のうち、少なくとも1つが-1<x<3の範囲にあ るとき、aのとり得る値の範囲はa< <a である。 〔4〕 AB=3,AC=2BCである△ABCにおいて, 辺AB上にAD: BD=2:1になる ような点Dをとる。 ∠ADC=135°であるとき, 次の にあてはまる数を求 め、解答のみを解答欄に記入しなさい。 ただし、 解答が分数となる場合は既約分数で答 えること (1) BC=√ ア (2) sin∠BAC= 1 (3) sin∠ABC= ウ である。 √5 である。 √5 である。 (4) △ABCの外接円の半径は (5) ABCの面積は オ である。 である。 医療技術・福岡医療技術学部

回答募集中 回答数: 0