学年

質問の種類

数学 大学生・専門学校生・社会人

(3)で①に-2分の3をかけたらダメなんですか? お願いします。

2年数学 過去問題を解く (2020(R2)) 年度 1月 ( 日( 配布 ① 次の | の中に適当な数または式を入れよ。 ただし (2), (5) は ①~③の番号で答えよ。 (1)s^²-18 を因数分解すると になる。 (2) 三角形ABCにおいて, ∠A<90" であることは、三角形ABCが鋭角三角形であるための . ① 必要十分条件である ③ 十分条件であるが必要条件ではない 10 -8 6 (3) S(s) はについての2次関数とする。 方程式∫(x)=0の解は1.3であり, S(0) 2 である。 放物線y f(x)の頂点のy座標は [ である。 (4) 三角形ABCの辺BC, CA を1:3に内分する点を それぞれP, Qとする。 線分 AP, BQ の交点をRとする。 AP13 のとき, AR- である。 2 0 (5) 下のヒストグラムはS市の30日間の最高気温のデータをまとめたものである。 ヒストグラムに 対応する箱ひげ図は である。 (日) Sif 4 6 8 10 12 14 16 18 20 (C) ② 必要条件であるが十分条件ではない ① 必要条件でも十分条件でもない (1) (+2)(49) =(+2)(22+3)(21-3)!! X (2) <A<90°鋭角三角形 12月脇形 【2年1月県下一斉模擬試験 】 【科目: 数学 単元名 1 I No. ( 4 ) ( 3 ) 宜( 号 氏名( 2 a = - ① H -1/(2x)+2 - 3f₁a-15²-17 +2 面倒)∠A=30°,<B=1200 よって、必要条件であるが十分条件でない② (³) f(a)= a (x+1)(x-3) (a: 12*) 255113. f(0)=0(0+1210-3) = -3Q=2 よって、ナッシー/(ベースメーン) =1+1+x+2 1012 14 16 18 20 (°C) 3 →8 X 4^-9 -9 → 4-18 -1 Q -3- (5) よって、頂点の座時はり 35¹1ht) fra) = − }(20-2) = 0 x=1 fev: -(1-2-3)= (4) ・メネラウスの定理より. QA =1 RP, BC x PB ca AR RP 4 xx=1 RP AP=13なので、AR=12/11 4~6°3 6°~80 1 8°~ 10⁰ 4 10~1283 12⁰~140 7 14° ~ 16° 9 16°~18° 2 1180~20° T Qi 中央値Q2は12~1 第1回分程改Q」は80~10 第3 〃 Q3は14~160 よって、② 1~7⑧9~516~22③3 24~30 Q2

回答募集中 回答数: 0
数学 高校生

11月の進研模試の数学の問題です。 (2)で、マーカーを引いている部分は、 なぜ"未満"ではなく、"以上"という意味の記号を用いるのか教えてください。

配点 解答 (1) (2) B2 完答への 道のり [1] 集合と命題(10点) NORIS 実数xに関する条件 g を次のように定める。 ただし は正の定数とする。 p:|x-2<3 ...... ① q: x²-ax-2a² <0 全4点 全日本 A 6点 (1) 不等式 ① を解け。 (2) SHOP [s] gであるための必要条件であるようなaのとり得る値の範囲を求めよ。 条件の不等式を解くと |x-2|<3 -3<x-2<3 -1<x<5 すなわち a≦l かつ 条件g の不等式を解くと x2-ax-2a²<0 A x-2のとり得る値の範囲を求めることができた。 B条件の不等式を解くことができた。 5 a so (x+a) (x-2a) <0 α >0 より, -a < 24 であるから -a<x<2a... がg であるための必要条件であるということは, 命題 g♪が真であ るということから, ③ の範囲が②の範囲に含まれればよい。 したがって _isa かつ 2a≦5 a ≤ 1 > 0 より 求めるαの値の範囲は 0 <a ≤1 NO 042 -110 -a Qales 560 2a -1<x<5 35- sa 絶対値を含む不等式の解 c>0 のとき |x|<c-c<x<c ass IN HIS D-75 0<a≤1 ・③α <βのとき、 2次不等式 (x-a)(x-β)<0の解は α<x<B 命題pgが真であるとき pg であるための十分条件 gはp であるための必要条件 という。 条件を満たすもの全体の集合を P, 条件g を満たすもの全体の集会 をQとするとき 命題pg が真である ⇒PCQ SUOE

回答募集中 回答数: 0
数学 高校生

証明の2段目にx=0,1,-1,2で等式が成り立つと書いていますが、これは証明するためにこの4つの値で考えているという解釈で合っていますか??

自係数比較法 検討 係数比較法は, 恒等式の性質 (p.35 基本事項 2① : 各項の係数はすべて0) が根拠となる これをPがxの3次式の場合, ax+bx+cx+d=0 ・・・・・・ A について証明してみよう。 [証明] ax3+bx2+cx+d=0 A がxについての恒等式とする。 ...... x=0,1,-1,2で等式が成り立つから x=0 のとき d=0 ① x=1 のとき a+b+c+d=0 x=-1 のとき -a+b-c+d=0 x=2 のとき 8a+46+2c+d=0 ①から a+b+c=0 -a+b=c=0 8a+46+2c=0 ...... ...... 000 ② +③ から 26=0 ゆえに 6=0 このとき, ②, ④ から a+c=0, 8a+2c=0 これを解いて a=c=0 よって a=b=c=d=0 B 逆に,Bが成り立てば明らかに A は 3 0.x3+0.x2+0.x +0=0となり,これは 4 xについての恒等式である。 ...... すなわち ax+bx+cx+d = 0 がxについての恒等式⇔a=b=c=d=0 ax+bx+cx+d=a'x+b'x' + c'x+d' がxについての恒等式 ⇔(a-a′)x3+(b-b')x2+(c-c)x+(d-d')=0 がxについての恒等式 よって, その各項の係数はすべて 0 であるから a=a', b=b', c=c', d=d' なお, 上の証明では,次のように、 2つの部分を示していることに注意する。 Aが恒等式 x=0, 1, -1,2で成立α=b=c=d=0 (必要条件) a=b=c=d=0 A が恒等式 ( 十分条件)

回答募集中 回答数: 0