学年

質問の種類

数学 高校生

(2)の解説において n≧2^mとすると、というのはただの仮定ですよね? nが2^mより小さくなる時のことは考えなくていいんですか?

[広島大] 基本100 重要 例題 すべての自然数nに対して, 2" n (1) k=1 k (2) 無限級数1+ (2) 数列 指針▷ (1) 数学的帰納法によって証明する。 1 2 3 1 + + することの証明 +1が成り立つことを証明せよ。 213 + n ・・・・・・・ は発散することを証明せよ。 基本 117, 重要 126 2m n2 とすると k= を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 は0に収束するから,p.201 基本例題 117 のように、199 基本事項 ②② 4章 15 ここで,m→∞のときn→∞となる。 5無限級数 計算すると,等 はさみうちの 比) II) an-br る。 内法を利用 ■れる。 計算 解答 2" (1) ・+1 k=1 k 2 ① とする。 [1] n=1のとき 1/2=1+1/2 k=1k = +1 2 よって,①は成り立つ。 [2]=mmは自然数)のとき、①が成り立つと仮定すると1/3+1 このとき 2m+1 k=1k = = 2m 2m+1 1 + 1 k=1k k=2+1 k 2 (1+1)+2+1+2+2+2 k -nxn 1-x) 2x2+1 2m+1=2m2=2"+2" 2"+2"_miei-9200 =m+ 1 1 1 +1+ + + 2m+1 2m+2 m 2 +1 1> 2m+k 2m+1 2 (k=1,2, 1+1.2mm+1 +1+ > よって, n=m+1のときにも ① は成り立つ。 0 1 2m+2m (= 2m+1 2m-1) [1], [2] から, すべての自然数nについて①は成り立つ。mil I (2) Sm=211 とおく。2" とすると,(1)から 2m m Sn≥ +1 k=1 k k=1 ここで,m→∞のときn→∞ で lim am (+1)=0 よって limSn=8 →∞ n→∞ 00 したがっては発散する。 lan≦bn でliman=∞⇒limbn=∞ (p.174 基本事項 ③ ②) 81U 81U n=1 n Job

未解決 回答数: 0
数学 高校生

a1 が 4分の3になる理由が分かりません

O 50 重要 例題 25 確率に関する漸化式と極限 00000 Aの袋には赤球1個と黒球3個が,Bの袋には黒球だけが5個入っている。 それぞれの袋から同時に1個ずつ球を取り出して入れ替える操作を繰り返す。 この操作を繰り返した後にAの袋に赤球が入っている確率をanとする。 (1) an を求め(liman を求めよ。類名城大 CHART & SOLUTION 711 基本19 重要 24. 数学B 基本 回後と (n+1) 回後から漸化式を作る ***** 確率の極限 回後に,どちらに赤球があるかで場合分けして考える (赤球が) n回後 (n+1) 回後 3 (右図参照)。 n回後に赤球がAの袋にある確率は an で あるから,Bの袋にある確率は 1-αであることに注意 し, + と の漸化式を作る。 解答 =1-01 Aにある an X- → an+1 Bにある 1-an 5 E A —— 5 11 an+1= Fan+ an+1 数列 10.4 は,初項ai-100 (1) (n+1) 回繰り返した後にAの袋に赤球が入っているのは [1] n回後にAの袋に赤球があり,(n+1)回目にAの袋から黒球が出る [2] n回後にBの袋に赤球があり,(n+1) 回目にBの袋から赤球が出る のいずれかであり,[1], [2] は互いに排反であるから an 31 an+1=an1+(1-an) - 4 2/10an + 1/3 を変形すると 4 $3 4 11 61 11 とくせい 方程式 11 11 1 -an 20 5 4 = an 9 20 44) 特性方程式 の解は 11 公比 4 9 36 " 20 a= 等比数列であるから 11/11\n-1 69 an = 9 36 20 よって 11/11\n-1 an = 36 20 + 9 (2) liman=lim 11/11\n-1 4 n→∞ n→ 00 36 20/ a+ 9 lin 内 11\n-1 no 20 =0.0 PRACTICE 25º OPS 三角形 ABC の頂点を移動する動点Pがある。移動の向きについては,A B→C, C→Aを正の向き, AC, C→B, BAを負の向きと呼ぶこ する。硬貨を投げて,表が出たらPはそのときの位置 う1度硬貨を投げ ・キ

解決済み 回答数: 1