学年

質問の種類

数学 高校生

解説お願いします

A-1 したか? 1/2(+1) を出していたのですが,それはわかりま セ: はい わかりました。 でも、それ以外にも導出する方法はある のですか? でも少し話をしましたが、一般的には、 (k+1)_k=ア 2+ウk+1... ① イ の恒等式を利用します。 具体的には、 ① 式に順に 1,2,3 を代入し, 以下のように縦にそろえて 加えてると X-14 -14 ア.13+ イ・12+ ウ・1+1 31-21 ア ・2+ イ -2 + ウ・2+1 ア ・33+ イ・32+ ウ.3 + 1 +1) ア + イ n2+1 • ウn+1 (n+1)-19 アイ k+ k + Σk+21 1 Jk-1 k-1 上式を 1 (n+1 イ =1 ア J=1 k- Je=1 割 整理し、右辺の計算をすると,2112m(n+1)" を弾くこと できますね。 k=1 上記のような方法で、 同じ項を消して和を導く問題はいろいろや りましたね。 例えばこんな問題も同じ方法で解けるのですよ。 1 1 (1) 数列{an) が an+1-ax=- を満たす 60 (+1)+3) ときの一般項を求めよ。 数列 [4.} の階差数列 by s+1-4. の一般項が与えられているね。 n≧2 のときにam=a1+2bk となることから,数列{an}の 一般項が求められるね。 k=1 1 1 = H (+1)+3) n+1 n+3 となるから, =2のとき, カ n + キ an + オ 60 (+1) +2) ク n2+ケn コ ① サ + 1X+2) であり,これは=1のときも成り立つから, 4, は①となるね。 では、追加です。 1 1 _ (2) 数列{a} = Ca4-0,- #³ c₁ = 60 を (+1)+3) 満たすときの一般項を求めよ。 問題 (1) と同じように, 数列{Cx) の階差数列を dw=Cw+1 - Cm と して,n≧2のときに + 2 となることから,一般項 k=1 が求められないかな。 1 1 1 +1+2) (n+1) (n+1) +2) と変形できるわ なるほど。それを利用して、数列 (c.)の一般項を求めてみよう。

回答募集中 回答数: 0
数学 高校生

帝京大学2024年度総合型選抜の過去問です。 誰かに解説して頂きたいです。

数学(総合) 経済・法・文・外国語・教育・医療技術・福岡医療技術学部 01-04-20 (1) (1) 6x + 13xy +6y-16x-9y-6= ア x+ イ ウエ x+ オ Ly+ 〔3〕 △ABCについて, sin A sin B sin C √7 が成り立っている。このとき. ア cos C= である。またこの△ABCの面積が1/3であるとき イ AB= ウ (2)実数a, b は,a-b=8,ab=4を満たす。 んだ とすると, (△BCD の面積) (△ACDの面積) I である。 さらに, ∠BCAの2等分線と線分AB との交点をD オ 3であり. このとき,+b= キクである。また,'+6= ケ コ である。 AD = カ キ CD = ク ケ である。 (3) x+yv3=2+√3 を満たす有理数x,yは,x= x+√3 サシ . y= スセである。 he a (3) 2. [2] (1)αを定数とする。 xの2次関数y=x-4ax-a+10q...... ① がある。 (i) ① のグラフは,a = ア のとき, 点 (1,10) を通る。 (ii) ①のグラフの頂点のy座標をm (a) とするとき m (a) カ である。 表される。 m (a) の最大値は イウ + エオα と 〔4〕 e ウ (1) 2次方程式 5x +28x-12=0の解は,アイ である。 I (2) αを定数とする。 - 8x +15≦0を満たすすべてのxが, 不等式x+ax +7≦0を オカキ 満たすときのとり得る値の範囲は, a≦ ク である。 (2)2辺がxとyの長方形の周の長さは20, 面積は16以上24以下である(ただし, ク である。 xyとする)。この長方形のxの範囲は, キ ≤ x ≤ (3) αを定数とする。 xの2次方程式(x+1)+α(x+2)+15=0が重解をもつαの値は, <サシとする。 サシである。ただし,ケコ ケコ VIDOR © NEWED 20 9月の スゲールは

未解決 回答数: 0
物理 高校生

上の例では上流に進む時負の記号を用いて表しているのに問10では上流に進む時負ではなく正の3.5m/sだったのですがどうゆうことですか?

G 速度の合成 ●直線上の速度の合成 図9のように,船が川の流 TIJK, 下流に向かって進んでいる。 水の流れがないとき(これを静水時という)の 船の速度を [b] [m/s] 流水の速度を v2 [m/s] とすると, 川岸で静止して いる人から見た船の速度 [m/s]は次のように表される。 1001+02 resultant velocity (4) 速度vを,速度vと速度v2の合成速度といい,合成速度を求めるこ とを速度の合成という。上流に向かう場合には,同図⑥のようになる。 01=5m/s v2 = 2m/s 02=2m/s 静水時の速度 正の向き (b 流水の速度 流水の速度 静水時の速度 01=-5m/s 正の向き 川 V₁ V2 v' = vi' + v₂' 01 ひ2 = -5m/s + 2m/s =-3m/s 問11 流水の速さが1.2m に対して垂直な方 時の船の速さを1 ている人から見 速度の分解 (5) る」ということを表 分解するといい ●速度の成分 向のとり方によ 図11のように 方向) に分解す が多い。 この 向きを表す正 速度 の x 川上 15 v = v₁+V2 =5m/s+2m/s =7m/s 図9 川の流れに対して平行に進む船の速度 問10 流水の速さが1.5m/sのまっすぐな川を静水時の速さが 5.0m/s の船が進ん 発展 物理 でいる。下流に向かって進んでいるときと, 上流に向かって進んでいるときの, 川岸で静止している人から見た船の速さ(速度の大きさ)はそれぞれ何m/s か。 ②平面上の速度の合成 図10のよう に,船が川を横切って進む場合を考 10 B 1秒後 C C' 静水時の 川岸に対する 船の速度 船の速度 15 Aにいた船が,船首をBへ向け D=01+02 える。 静水時の船の速度を0] [m/s], 流水の速度を v2 [m/s] とする。 ( シータ 角を 0, 20 by とする 成りたつ Ux= V= また。 2x成

回答募集中 回答数: 0