学年

質問の種類

英語 高校生

カッコで囲んだとこの英文の1つ目のandからの訳がどうして2枚目のようになるのか教えてください。 2枚目のどんな疑問が重要か〜の次のとこからです

ample practices varied across time and place. The truth is that we about what preliterate societies knew or believed. But they left behind *. evidence of their attention to the movements of the Sun and the phases of the Moon. And we can be sure that whatever questions they asked of the heavens were very different from those that motivate space exploration today. (A) rotic othe In reality, the difference between ancient and modern knowledge systems is more qualitative than quantitative; it is not about how much is known, but about what questions are important and about the acceptable ways of asking and answering those questions. And while we may not easily be able to slip between our modern worldview and those of others, we can nonetheless attempt to do so by asking not what ancient people knew about the world, but what their questions were when they looked at it. If we do this in the case of Mars, examining a few of the earliest known examples from around the world, we can see how sky knowledge was considered important to the functioning of the state whether it was *astrological knowledge in the service of good governance, or knowledge of bloodlines and relationships with the gods and other sky entities, which was used (B) - verdd

回答募集中 回答数: 0
地理 高校生

「家庭科 充実した生涯へ」からお聞きしたいです 《介護を担う人にはどのような課題があるか。P62を参考に130字程度で説明しない》について教えてください

1 は 加入 から 在 択 人 ン 護 柄 調査」) 22.9% 16.2% 5.4% 5 介護を担う人 介護は,だれがどのように担っているのだろうか。介護する) 要介護者と同居の人が約50%を占め、別居の家族や、 の専門家の割合が、それぞれ約10%強となっている。 事業者な また。 する人を性別にみると, 女性が約70%, 男性が約30%である。 れまでは女性が圧倒的多数を占めていたが,近年男性介護者の態 も増加している (7) さらに、近年、平約者会の使者向が胎児の使用度の水着から そうろうかいご にんにんかい 介護が必要になる年齢も高くなる傾向がある。 それにともなっ 護にあたる人の年齢も高くなり、 老老介護や認認介護と呼ばれるよ うな現象が起こっている。今後は、本部の書店で、別居家族が に介護にあたる場合も増加するだろう。同時期に子育てと介護と。 両方を担うダブルケアの課題も見過ごせない。 6 介護の社会化と介護保険制度 介護が必要となった高齢者を,家族とともに社会全体で支えて いく「介護の社会化」をめざす介護保険が,2000年から導入された その目標は,高齢者自身の自己決定の尊重であり、介護を必要とす る人が自分で必要なサービスなどを選択しつつ,自立的な日常生活 を営めるように支援する社会的なしくみである。 介護保険制度は,市区町村が保険者となり、日本に住所をもつ 40歳以上の人は被保険者として月々保険料を支払うしくみである いきほうかつえん ③ ようかいご (8)。サービスを受けるには, 市区町村などに申請し要介護認定を 受ける。 要支援と認定された場合は,地域包括支援センターととも に介護予防プランを立て介護予防サービスを利用する。 要介護と認 定された場合は,介護支援専門員(ケアマネジャー) とケアプラン を立て介護サービスを利用する。 介護を必要とする高齢者本人、家 族もまじえて本人の希望をできるだけかなえるよう協議がおこなわ れる。 サービスを受ける際には費用の1~3割を負担する。 かいごぼう 0 近年は介護予防に重点が置かれるようになっており, 体力をつけ 口と歯の健康を守る, 健康を保つ食事の工夫など、できる限り 介護を必要としない状態を保つ対策が展開されている。 7 高齢 大事で ない。 のな す大 介護 性が P に おこなう試験に合格し、所定の実務研修を終了 ケアプラン(介護サービス利用計画の作成 支援専門員 都道府県知事指定の スの調整などをおこなう。

回答募集中 回答数: 0
数学 高校生

N(p,n分のpq)とN(m,n分のσ二乗)って一緒なんですか?なんで違う式になってるかわからないです あとそもそも母比率と標本比率の関係がわかりません 教えてください

5 B 標本平均の分布と正規分布 ある工場で製造された製品について 不良品の割合を調べる場合のよ うに,母集団の各要素が,ある特性 A をもつかどうかを調査の対象と することがある。このとき,母集団全体の中で特性 A をもつ要素の割 合を,特性 A の 母比率という。これに対して,標本の中で特性 A を もつ要素の割合を,特性 A の標本比率という。 特性 A の母比率がpである十分大きな母集団から,大きさがnの標 本を無作為に抽出するとき 標本の中で特性 A をもつものの個数をT とすると,Tは二項分布B(n, p)に従う。 標本 則が成り立 標本平場 母平均 5 出する Nm 母集 分布 N 15 10 よって,g=1-p とすると, 86ページで学んだことから,nが大き いとき,Tは近似的に正規分布N(np, npg) に従う。 特性 A の標本比率を R とすると,R=- Tである。Rは標本平均 X 例題 10 n 9 と同様に確率変数で PAR E(R)=E(T)=1+np=p V(R)-112V(T)=1212.npa pq •npg= n ☆正規分布) したがって,標本比率 R は近似的に正規分布 Np, pq に従う。 n (6) 15 標本比率 R は,次のように考えると, 標本平均 X の特別な場合になる。 特性 A の母比率がである母集団において, 特性A をもつ要素を1, もたない要素を0 で表す変量 x を考えると,大きさんの標本の各要素 20 を表すxの値X1,X2, ......, Xn は, それぞれ1または 0 である。 特性 A の標本比率R は, これらのうち値が1であるものの割合であ るから h大きいとき X1+X2+......+Xn R= hXIII N (p, PHP), Ri n N(ゆ)に従う 20 4

回答募集中 回答数: 0
物理 高校生

剛体のつりあい プロセス問題(3)を教えていただきたいです。 そもそものところ負のモーメント、正のモーメントとということも理解していません。 どっちもおんなじ方向回ってるから左回りやん。ってなります。 解説お願いします🙇

プロセス 次の各問に答えよ。 図1のように,点Pに 2.0Nの力を加える。 点0のま 2.0N -22cm 2) F わりの力のモーメントの大きさを求めよ。 OQ は力の作 用線に引いた垂線で, OP は25cm, OQは22cm である。 2 図2のように, 点Pに 8.0Nの力を加える。 点0のま わりの力のモーメントの大きさはいくらか。 (0) Q 図 1 25cm P 8.0N 3 図3のように,点A,Bに平行で逆向きの5.0N の力 を加える。 点A, B, Cのまわりの力のモーメントの和 はそれぞれいくらか。 反時計まわりを正とする。 図2 130° P 10 -50cm 5.0N 1.0mB 図3 Brie A 2.0m C 5.0NY 逆き 逆比 きい 4 図4のように, 軽い一様な棒に重さ w, 4w 3wの物 体が固定してある。 全体の重心はどこか。 -20cm -20cm- 図 4 コモ 5 図5のように,重さ5.0N, 長さ1.0m の一様な棒の 一端をちょうつがいで固定し,他端に鉛直上向きの力を 加えて棒を水平に保つ。 何Nの力を加えればよいか。 解答 W 4w 3w -1.0m- 図5 10.44N・m 2 2.0N・m 3 すべて -15N・m 4 左端から25cmの位置 5 2.5N

回答募集中 回答数: 0
数学 高校生

(2)(3)の違いがよく分かりません。右ページの➗3! をする理由を読んでもまったく分かりません。誰か教えて欲しいです

372 基本 例題 25組分けの問題 (2) ... 組合せ 9人を次のように分ける方法は何通りあるか。 (1)4人,3人,2人の3組に分ける。 (2)3人ずつ,A, B, Cの3組に分ける。 (3) 3人ずつ3組に分ける。 (4)5人2人、2人の3組に分ける。 0000 [類 東京経 基本21 「9人」は異なるから、区別できる。 指針 組分けの問題では,次の①,②を明確にしておく。 ①分けるものが区別できるかどうか ②分けてできる組が区別できるかどうか ****** 特に,(2)と(3)の違いに注意。 (1) 3組は人数の違いから区別できる。 例えば, 4人の組を A, 3人の組をB, 2人の 組をCとすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A,B,Cの区別をなくす。 →3人ずつに分けた組分けのおのおのに対し,A,B,Cの区別をつけると、果た る3個の順列の数 3! 通りの組分け方ができるから,[(2) の数]÷3! が求める 法の数。 (4)2つの2人の組には区別がないことに注意。 なお, p.364 基本例題21との違いにも注意しよう。 解答 (1)9人から4人を選び, 次に残った5人から3人を選ぶ と、残りの2人は自動的に定まるから, 分け方の総数は 9C4×5C3=126×10=1260 (通り) ei (2)Aに入れる3人を選ぶ方法は 9C3通り Bに入れる3人を, 残りの6人から選ぶ方法は C3通り Cには残りの3人を入れればよい。 したがって, 分け方の総数は C3X6C3=84×20=1680 (通り) 2人,3人,4人の順に (1) んでも結果は同じになる C4X5C3×2C2としても 同じこと。 (2)で,A,B,Cの区別をなくすと, 同じものが3! 通 次ページのズームUP りずつできるから、分け方の総数は (9C3X6C3)÷3!=1680÷6=280 (通り) (4)A(5人),B(2人), C (2人) の組に分ける方法は C5×42通り B,Cの区別をなくすと,同じものが2! 通りずつでき るから,分け方の総数は (9C5X4C2)÷2!=756÷2=378 (通り) 照。 次ページのズーム 例

回答募集中 回答数: 0
数学 高校生

アとウの問題の最後って逆の確認はしなくていいんですか?

8 恒等式 - (ア) 恒等式 4+7x3-32-23-14 =a+bx+cx(x-1)+dx(x-1)(x-2)+ex(x-1)(x-2)(x-3) が成り立つとき, 定数ae の値を求めよ. (九州産大・情報科学, 工) (イ) 次の式がxについての恒等式になるように,定数a, b, c の値を定めなさい。 x3+2x2+1=(x-1)+α(x-1)2+6(x-1)+c ( 流通科学大) (ウ) x+y=1を満たすx, yについて,ax2+bxy+cy2=1が常に成り立つように a, b, c を定めよ. (龍谷大・理工(推薦)) 係数比較法と数値代入法 多項式f(x) g(x)について, f (x)=g(x) が恒等式になる条件を とらえる主な方法は,次の①と②の2つである. 1 f(x)とg(x)の同じ次数の項の係数がすべて等しい. ② f(x), g(x) の (見かけの) 次数の高い方をn次式とするとき, 異なる n+1個の値に対して,f(x)=g() が成り立つ. x-pで展開 (イ)の右辺を 「x-1について展開した式」 というが, どんな多項式も につい て展開した式として表すことができる. この形にすれば (x-p)2で割った余りなどがすぐに分かる. (イ)を右辺の形にするには, 左辺の各項を,r={(x-1) +1}などとして展開すればよい. 等式の条件 1文字を消去するのが原則である(本シリーズ 「数Ⅰ」 p.16). 解答豐 (ア) 与式の両辺にx=0を代入して,a=-14. αを移項し両辺をxで割って, x3+7x2-3x-23 =b+c(x-1)+d(x-1)(x-2)+e(x-1)(x-2)(x-3) 両辺に x=1,2,3,0を代入して, -18=6,7=b+c,58= 6+2c+2d, -23=b-c+2d-6e b=-18,c=25, d=13, e=1 (イ)x+2x2+1={(x-1)+1}3+2{(x-1)+1}2+1 ={(x-1)+3(x-1)2+3(x-1)+1}+2{(x-1)2+2(x-1)+1}+1 =(x-1)+5(x-1)2+7 (x-1)+4 (α=5,b=7,c=4) (ウ) y=1-xであるから, ax2+bx (1-x)+c(1-x)2=1 これがェによらず成り立つから,r= 0, 1, -1 を代入して, c=1, a=1, a-26+4c=1 .. a=1,c=1,6=2 注 (ア) ①x=1を代入して♭を求め, bを左辺に移項し両辺をx-1 で割る'代入'と '割り算’を繰り返して求めることもできる. (イ)与式にx=1を代入し,c=4. 両辺をxで微分して, 3x2+4x=3(x-1)2+2a(x-1)+b.x=1を代入し, 6=7. (以下略) ・① 多項式の恒等式が両辺ともにェ を因数に持てば, 両辺をェで割っ た式も恒等式. e=1であることは、 元の式の両 辺のの係数を比べることでも 分かる.このような考察をして ミスを防ごう. ← (x+y)²=1となる. 次にx=2を代入してcを求め,c を移項して2で割る. ←代入と微分"を繰り返して 求めることもできる. 波調

回答募集中 回答数: 0