学年

質問の種類

数学 高校生

135番なんですけど、回答の5行目までは分かるのですが、それ以降何言ってるかわかりません。あと回答の黒塗りされている場所の3行目以降も何言ってるかわかりません。

134 組立除法を用いて, 次の多項式Aを多項式Bで割った商と余りを求めよ。 複数になっているも (1) A=4x3+x2+6x-5, B=x-1 (2) A=3x3-x2+3, B= x +2 (3) A=2x-7x2+8x-8, B=2x-3 =+6 と30余る。 発展問題 135 多項式P(x) を (x-1)2で割ると余りが 4x-5, x+2で割ると余りが4 ヒント である。このとき, P(x) を (x-1)(x+2) で割ったときの余りを求めよ。 133 (1) x=√2-1 から, x+1=√2 の両辺を2乗して整理すると x2+2x-1=0 3 2 134 (3) x- で割り、割り算の等式を作る。 135 P(x) を (x-1)(x+2) で割ったときの余りを、更に (x-1)2で割る。 ゆえに 商x-2x+ 1, 余り -5 135 P(x)= を x+2 erとする Q₁(x される。 ①に代 *)=(x-1 =(x- ここで,P(x) るから PC 針■■ 等式P(x) = (x-1)(x+2)Q(x) +R (x) を作る。 (R(x)は ax2+bx+c と表される) (x-1)(x+2)Q(x) は (x-1)2で割り切れるか ら, R(x) を (x-1)2で割ったときの余りは, P(x) を (x-1)2で割ったときの余り (=4x-5) と一致する。 よって R(x)=ax2+bx+c =a(x-1)2+4x-5 あとは, αの値を求める。 P(x) を (x-1)(x+2) で割ったときの商を Q(x) とする。 このときの余りは、2次以下の多項式または0で あるから, ax2+bx+c (a, b, cは定数) とおけ る。 よってP(x)=(x-1)(x+2)Q(x)+ax²+bx+c 更に,P(x) を (x-1)で割ると余りが4x-5で あるから P(x)=(x-1)(x+2)Q(x)+α(x-1)+4x-5 ...... ① と表される。 P(x) を x+2で割ると余りが-4であるから P(-2) =-4 また, ① から P(-2)=9a-13 よって 9a-13=-4 ゆえに a=1 したがって, 求める余りは (x-1)2+4x-5 すなわち x2+2x-4 別解指針■■■ 等式P(x)=(x-1)2Q(x)+4x-5を作る。 Q(x)をx+2で割ったときの余りをとする と,Q」(x)=(x+2)Q2(x) + r と表される。 よって P(x)=(x-1)^{(x+2)Q2(x)+r+4x-5 =(x-1)(x+2)Q2(x)+(x-1)'r+4x-5 ゆえに、求める余りは(x-1)+4x5 あとは, rの値を求める。 また、②から よって gr これを② P(x)=(x- =(x- ゆえに、 求め 136 (1) 移項 左辺を因数分 よって ゆえに x x (2) 左辺を因数 (3 よって 3 ゆえに (3)左辺を因 よって ゆえに x 2 (4) 左辺を因 よって = ゆえに (5) 左辺を因 よって ゆえに 137 (1) P(= P よって, P を因数分解 P(x) =0 カ したがって (2) P(x)=1

回答募集中 回答数: 0
数学 高校生

解説をみてもよくわかりません 解説お願いします

-20 基本例 例題 54 平面上の点の移動と反復試行 右の図のように,東西に4本, 南北に5本の道路がある。 地点Aから出発した人が最短の道順を通って地点Bへ 向かう。このとき,途中で地点P を通る確率を求めよ。 ただし,各交差点で, 東に行くか, 北に行くかは等確率と し,一方しか行けないときは確率1でその方向に行くも のとする。 A 基本 52 重要 55 指針 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 から, これは,どの最短の道順も同様に確からしい場合の確率で,本間は道順によって確率 5C2X2C2 7C3 とするのは誤り! 00000 P B 重要 右図の 出たら 別に 「たら れぞ Aは う確 金 が異なる。 例えば, A111→ →→P→→ Bの確率は C D P B 11 1 ・1・1・1・1= 222 A→1→11P 11 Bの確率は 111 11 1 ・1・1= A 2 2 2 22 32 XUS したがって,Pを通る道順を, 通る点で分けて確率を計算する。 右の図のように,地点 C, D, C′', D', P'をとる。 解答 P を通る道順には次の3つの場合があり,これらは互いに 排反である。 D P B C D' P' [1] 道順 A→C→C→P この確率は 1/2x/121x1/2×11=(1/2)=1/1/2 A [2] 道順 A→D→D→P この確率は sc.(1/2)(1/2)x1/2×1=3 (1/2)=1/4 3 16 [3] 道順 AP′'→P [1] ↑↑↑→→と進む。 [2] ○○○と進む。 この確率はC(1/1) (12/12 × =6 6 2 32 よって、求める確率は 1 3 6 + 16 8 16 32 32 ○には,1個と 12個が 入る。 [3] 〇〇〇〇と進む。 ○には、2個と12個が 2 入る。 練習 右の図のような格子状の道がある。スタートの場所か ③ 54 端で表が出たときと,上の端で裏が出たときは動かな いものとす み,裏が出たら上へ1区画進むとする。ただし,右の 表が出たら右へ1区画進 ら出発し,コインを投げて, ゴール A 解答

回答募集中 回答数: 0
生物 高校生

まだ学校で習っておらず分子進化のやり方がわかりません。この問題はどのように考えれば良いのか教えてください!お願いします。

基本例題 6 分子進化 図は,表のアミノ酸の違いの数からA~Dの系統関係を推定し て描いた系統樹である。XからA~Dまでの進化的距離は等しく, 化石を用いた研究から, BとC が 2.0 × 107 年前に分岐したことが わかっている。次の値を計算し,有効数字2桁で答えよ。 解説動画 全口 生物種 A B. C D A 38 表は、4種の生物種 A~D で共通して存在するタンパク質Pのアミノ 酸配列を比較し, それぞれの間で異なっている アミノ酸の数を示したものである。 この違いは, A~Dの共通祖先Xがもっていたタンパク質P の遺伝子が長い時間を経過する間に変化し,そ の結果,アミノ酸配列にも違いが生じたことを 示している。 B C3688 34 19 17 C D B (1) このタンパク質Pを構成するアミノ酸1つが変化するのにかか る時間は何年か。 C (2) A~D が共通祖先 X から分岐したのは今から何年前と推定されるか。 指針 (1) アミノ酸が異なっている数と分岐後の年数が比例すると考える。 BとCのアミノ 酸の違いが8つなので, 2.0 × 10年前に分岐後,それぞれ4つずつ変化したと考 えると1つ変化するのにかかる時間は, (2.0 × 107 ) ÷ 4 = 0.5 × 107 = 5.0 × 10° (2) 表より, AとB・C・D の間では平均 (38+36 +34) + 3 = 36か所違う。 よって, 分岐後それぞれ36÷2=18か所ずつ変化したと考えられ, (1) より, 1つ変化する のに 5.0 × 10° 年かかる。 したがって, 18個では 5.0 × 10° × 18 = 9.0 x 10 解答 (1) 5.0 × 10°年 (2)90 × 10年前

回答募集中 回答数: 0
生物 高校生

高一生物基礎の問題です (4)がよくわかりません!教えてください!

リード D 知識] 22 ミクロメーターについて、 以下の問いに答えよ。 リード D 応用問題 図は,光学顕微鏡にて100倍で観察した視野に見られる2種類のミクロメーター (a, b) の一部を示したものである。 なお, ミクロメーターaには1mmを100等分した目 盛りが記されている。 b (1)この光学顕微鏡のレボルバーを操作した際, 観察視野内でミクロメーターの目盛りの幅 が変わって見えるのは, a, bのどちらか。 記号で答えよ。 また, そのミクロメーター a の名称を答えよ。 30 40 50 60 (2)調節ねじの操作によるピントの変化について,最も適当なものを次の(ア)~(ウ)から 1つ選べ。 (ア) ミクロメーターa のみ変化する。 (イ) ミクロメーター b のみ変化する。 (ウ)ミクロメーター a, b どちらも変化する。 175x×38=285× 7. 5 ¥38 6040 22'5 2850 第1章 生物の特徴 (3) この光学顕微鏡の対物レンズの倍率をかえて計測すると, ミクロメーター bの1 目盛りが示す長さ(μm)は,図の場合のx倍になることを確認した。この倍率で, ある生物の卵細胞を観察し, 直径をミクロメーター bで計測すると38目盛りであ った。この卵細胞の直径は何μm か x を用いて表せ。 (4) (3)のとき, 対物レンズの倍率を図の場合の何倍にしたと推測できるか, xを用い て表せ。 [岩手医大 改]

回答募集中 回答数: 0