学年

質問の種類

数学 高校生

総数を求める時何故割り算するのかと 合計者を掛け算で求める理由がわからないので教えて下さい!

31² 整数値で 分布 正規分布 21 ある試験での成績の結果は, 平均 71 点,標準偏差 8点であった。得点の分布は正規分布 に従うものとするとき,次の問いに答えよ。 標準偏差 15点 Y N (0, 1) に従う。 (1) 63点から 87点のものが450人いた。 受験者の総数は約何人か。 のとき,合格点を 55 点とすると,約何人が合格することになるか。 (解説) X-71 得点Xが正規分布 N (71,82) に従うとき, Z=- 8 (1) X = 63 のとき Z = -1, X = 87 のとき Z = 2 であるから P(63≦X≦87)=P(−1≦Z≦2)=P(−1≦Z≦0)+P(0≦Z2 =p(1) +p(2) = 0.3413+0.4772=0.8185 よって、受験者の総数は したがって 450÷0.8185=549.7...... 約550人 よって, 合格者の人数は (2) X = 55 のときZ=-2であるから P(X≧55)=P(Z≧-2)=0.5+p(2)=0.5+0.4772=0.9772 TO1)に従う確率変数 71 したがって .00 549.7×0.9772 = 537.1...... 約 537 人 正規分布表 .01 0.6 0.2257 0.7 0.2580 0.8 0.2881 0.9 0.3159 1.0 0.3413 0.3438 1.1 0.3643 0.3665 .04 .03 .02 4.05 0.3461 は標準正規分布 N(0, 1) に従う。 .06 0.2357 0.2291 0.2324 0.2642 0.2673 0.2611 0.3023 0.3051 0.2967 0.2939 0.2910 0.3186 0.3212 0.3238 0.2389 0.2704 0.2995 0.3264 0.3289 0.3315 0.0 10.00000.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 0.2 0.0793 0.0632 0.0871 20.1406 0.1443 0.1480 0.1517 0.1331 0.1368 0.1255 0.1293 0.3 0.1179 0.1217 0.1591 0.4 0.1554 20.1626 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.21900.2224 0.2422 0.2454 02466 0.25170.2549 0.2734 0.2764 0.2794 0.2823 .07 y ↑ .08 0.3531 0.3508 .09 20.2852 0.3078 0.3106 0.3133 0.3340 0.3365 0.3389 0.3554 0.3577 0.3599 0.3621 0.3485 20.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

回答募集中 回答数: 0
英語 高校生

添削をお願いしたいです!(画像が送りきれないので回答者の方が返信したら追加で送ります) 自分の解答↓ 短い時間、レンジで加熱すると心臓病のリスクを下げるフラボノイドを増加させることができるが、長い時間加熱したり多すぎる水の中で加熱するとむしろフラボノイドは低下してしまう。た... 続きを読む

一般に,電子レンジでの調理は,他の調理法に比べると栄養素 16 の保持には好ましいとされるが,調理時間が長かったり、多量の 水を使って調理したりするとブロッコリーでは心疾患のリスクを減らす フラボノイド類が減少するという報告がある。 ただ、食材によって栄養保 持の結果はさまざまであり,統一見解はない。電子レンジ調理にプラスチ ック容器を使うと, 可塑剤のフタラートなどの化学物質が溶け出すが, こうした物質は微量であってもホルモンや代謝系を乱すほか、 生殖問題や ぜんそく, ADHD との関連性など,さまざまな悪影響を及ぼすことが指 摘されている。また, 高温になる電子レンジでの加熱で分子の結合が変わ り,新たな高エネルギーの分子が作り出される。 これがDNA と反応し て突然変異を引き起こすとされており, ジャガイモを電子レンジ加熱した ことで,発がん物質として働くアクリルアミドが生成した例が報告されて いる。(400字以内)発 当 解答編

回答募集中 回答数: 0
理科 中学生

(3)が分かりません。教えてください!

風船 201 7 w: E wit イ ウw : 下 エ : 下 x : 減る w (3) 会話文中yzにあてはまる数値として最も適当なものを、次のア~オのうちから それぞれ一つずつ選び, その符号を書きなさい。 アイ 35 I 7 オ 9 を実 (4) 会話文中の下線部b のしくみによって発生する雲として適当でないものを、次のア~エのう ちから一つ選び、その符号を書きなさい。 ア 低気圧の中心部分にふきこんだ空気が上空へ向かうことによって発生する雲 x : 増える x : 減る x : 増える しめった空気が夜間に地表付近で冷やされることによって発生する雲 しゃめん じょうしょう 空気が山の斜面にそって上昇することによって発生する雲 地表付近が強く熱せられ空気の流れができることによって発生する 3 抵抗器に加えた電圧と流れる電流の大きさの関係について調べるため、次の実験1~3を行 いました。これに関して, あとの (1)~(3)の問いに答えなさい。 V 実験 1 (吐 ① 抵抗(電気抵抗)の大きさが異なる4種類の抵抗器 a〜dおよび15Ω, 25Ωの抵抗器を それぞれ1個ずつ用意した。 ②図1のような回路をつくり, 電源装置で, 抵抗器 a に加える電圧を0Vから5Vまで 1Vずつ変化させ,そのときの電流の大きさをそれぞれ測定した。 (3 電圧を0Vにもどし、 抵抗器 a を抵抗器 b ~ d および15Ω, 25Ωの抵抗器にかえて, それぞれ②と同じ操作を行った。 図2は,測定した結果をグラフに表したものである。 図1 2 AM S 抵抗器 a 電源装置 A 電流 A 20.5 電 0.3 〔A〕 0.4 0.2 0.1 0 0 1 23 電圧〔V〕 抵抗器d 2019年 千葉県 (前期) (29) 15Ωの抵抗器 抵抗器 c 25Ωの抵抗器 抵抗器 b 抵抗器 a 4 5 (8) 実験 2 図3図4のような回路を, 15Ω, 25Ωの抵抗器を使用してつくった。 電源装置の電圧を 3Vにし, Ⅰ~Ⅰの電流の大きさをそれぞれ測定した。 部b よ .L ] り

回答募集中 回答数: 0
数学 高校生

116.4 a^2019を7で割り切れないのは3^2019 であることを示してから、 2019を3で割る作業を続けても◯だと思いますが、 下の方[3^3≡6(mod7),6^2=1(mod7)]を用いた方が 効率的ですよね? また、記述的にはどちらを書いても◯ですよね??

lines 486 00000 基本例題 116 割り算の余りの性質 a,bは整数とする。 α を7で割ると3余り, 6を7で割ると4余る。このとき、 次の数を7で割った余りを求めよ。 (1) a+2b (2) ab (3) aª p.485 基本事項 ① ③3 指針 前ページの基本事項③の割り算の余りの性質を利用してもよいが, (1)~(3) は、 161704 a=7g+3,6=7g' +4 と表して考える基本的な方針で解いてみる。 (3)(7g+3)* を展開して,7×の形を導いてもよいが計算が面倒。 d'=(a)2 に着目 し,まず, a²を7で割った余りを利用する方針で考えるとよい。 【CHART 割り算の問題 (4) 割り算の余りの性質 4α” をmで割った余りは, r” をmで割った余りに等しい を利用すると,求める余りは 「32019 を7で割った余り」であるが,32019 の計算は不可能。 このような場合、まずα” を m²で割った余りが1となるnを見つけることから始める のがよい。 A=BQ+R が基本 (割られる数) = (割る数)×(商)+(余り) 解答 a=7g+3, b=7g' +4 (g, g′ は整数)と表される。 (1) a+26=7g+3+2(7g'+4)=7(g+2g') +3+8 =7(g+2g′+1)+4 したがって, 求める余りは 4 (2) ab=(7g+3)(7q'+4)=49gg'+7(4g+3g′)+12 =7(7gg'+4g+3g' + 1 ) +5 したがって 求める余りは 5 (3) a²=(7q+3)^=49g²+42g+9=7 (7g²+6g+1)+2 よって, d²=7m+2mは整数)と表されるから α^=(a²)²=(7m+2)=49m²+28m+4=7(7m²+4m)+4 したがって 求める余りは 4 (4) を7で割った余りは, 3°を7で割った余り6に等しい。 よって, (a)2=a を7で割った余りは, 62=36を7で割った 余り1に等しい。 a2019a2016 (α6) 336.3であるから, 求める余りは, 1336.6=6を7で割った余りに等しい。 したがって 求める余りは 6 (4) 2019 練習 ②② 2 116 き,次の数を5で割った余りを求めよ。 (1) 6 (2) 3a-2b (3) 62-4a 別解 割り算の余りの性質を 利用した解法。 (1) 2を7で割った余りは 2 (27.0+2) であるから, a,bは整数とする。 αを5で割ると2余り, d²-b を5で割ると3余る。 このと 26 を7で割った余りは 2・48を7で割った余り1 に等しい。 ゆえに, a+26を7で割っ た余りは3+1=4を7で 割った余りに等しい。 よって、求める余りは 4 (2) ab を7で割った余りは 3・4=12を7で割った余り に等しい。 よって、求める余りは 5 (3)α を7で割った余りは 3* = 81 を7で割った余り に等しい。 よって, 求める余りは4 (4) 299 (p.491 EX81 )

回答募集中 回答数: 0
数学 高校生

116.4 記述でこの回答でも良いですか?

486 00000 基本例題 116 割り算の余りの性質 a,bは整数とする。 α を7で割ると3余り, bを7で割ると4余る。このとき, 次の数を7で割った余りを求めよ。 (1) a+2b (2) ab (3) aª CHART 割り算の問題 基本 指針▷> 前ページの基本事項③の割り算の余りの性質を利用してもよいが,(1)~(3) は、 a=7g+3, b=7g'+4と表して考える基本的な方針で解いてみる。 282700 (3) (7g+3)^ を展開して, 7× ○ ▲ の形を導いてもよいが計算が面倒。 α = (d²)^ に着目 し,まず,2を7で割った余りを利用する方針で考えるとよい。 (4) 割り算の余りの性質4α”をmで割った余りは,” をmで割った余りに等しい を利用すると,求める余りは 「32019 を7で割った余り」 であるが, 3219 の計算は不可能。 このような場合,まず α" をmで割った余りが1となるnを見つけることから始める のがよい。 解答 a=7g+3,6=7g' +4 (q, q' は整数)と表される。 (1)a+26=7g+3+2(7g'+4)=7(g+2g') +3 +8 =7(g+2g′+1)+4 THO したがって、求める余りは 4 (2) ab=(7g+3)(7q'+4)=49gg'+7(4g+3g′)+12 (4) a OSHO 2019 A=BQ+R が基本 (割られる数) = (割る数) × (商)+(余り) 余りに等しい。 2019=q2016a3= (q6)336.3であるから、求める余りは, 1336.6=6を7で割った余りに等しい。 したがって 求める余りは 6 練習 ②116 き,次の数を5割 =7(7gg' +4g+3g′+1)+5 したがって,求める余りは 5 (3) a²=(7g+3)=49q²+42g+9=7(7q²+6g+1)+2 よって, d²=7m+2(mは整数)と表されるから a^=(a²)²=(7m+2)=49m²+28m+4=7(7m²+4m)+4 4 したがって 求める余りは (4) を7で割った余りは,3を7で割った余り6に等しい。 よって、(a)2=d を7で割った余りは,62=36を7で割った a,bは整数とする。 αを5で割ると2 別解 割り算の余りの性質を 利用した解法。 (1) 2を7で割った余りは 2 (27.0+2) であるから、 26を7で割った余りは 2・48を7で割った余り1 に等しい。 ゆえに α+2を7で割っ た余りは3+1=4を7で 割った余りに等しい。 よって 求める余りは 4 (2) ab を7で割った余りは 3・4=12を7で割った余り に等しい。 よって、求める余りは 5 (3) αを7で割った余りは 3* = 81 を7で割った余り に等しい。 よって、求める余りは る。 この

回答募集中 回答数: 0