学年

質問の種類

数学 高校生

113. mとnが互いに素でないことを言い換えると mとnが素数を公約数にもつ となるのはなぜですか? 例えばm=20,n=4のときm,nは互いに素でなく、 公約数は4で素数ではないですよね?

基本例題 113 互いに素に関する証明問題 (2) 00000 自然数 α, bに対して, aとbが互いに素ならば, a+babは互いに素であるこ とを証明せよ。 p.476 基本事項 [②] 重要 114 指針a+b と ab の最大公約数が1となることを直接示すのは糸口を見つけにくい。 そこで,背理法(間接証明法)を利用する。 →a+b と ab が互いに素でない,すなわち a+b と ab はある素数』を公約数にもつ,と仮定して矛盾を導く。 なお,次の素数の性質も利用する。 ただし, m, nは整数である。 mnが素数」の倍数であるとき, mまたはn はかの倍数である。 CHART 互いに素であることの証明 ① 最大公約数が1を導く ② 背理法 (間接証明法) の利用 解答 a+b と ab が互いに素でない, すなわちa+b ab ある素 数』を公約数にもつと仮定すると ② (k, lは自然数) a+b=pk...・・・ ①, ab=pl と表される。 ② から, a または6の倍数である。 aがpの倍数であるとき, a=pm となる自然数mがある。 このとき, ①から6=pk-a=pk-pm=p(k-m) となり, ももかの倍数である。 これはaとbが互いに素であることに矛盾している。 bがpの倍数であるときも、同様にしてαはpの倍数であり, aとbが互いに素であることに矛盾する。 したがって,a+b と αb は互いに素である。 mとnが互いに素でない ⇒ m nが素数を公約 数にもつ <k-mは整数。 <a=pk-b =p(k-m') ( m'は整数) [参考] 前ページの基本例題112 (2) の結果 「連続する2つの自然数は互いに素である」 は, 整数 の問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 問題 素数は無限個あることを証明せよ。 [証明] を2以上の自然数とすると+1は互いに素であるから,(n+1) は異な 」 る素因数を2個以上もつ。 同様にして, n=n(n+1)=n(n+1) (n2+1) は異なる素因数を3個以上もつ。 この操作は無限に続けることができるから, 素数は無限個存在する。 ※各自=2や=3などの場合で,このことを検証してみるとよい。 素数が無限個あることの証明は, ユークリッドが発見した背理法を利用する方法が有名である が、上の証明は、21世紀に入って (2006年), サイダックによって提示された, とても簡潔な方 法で 481 4章 17 約数と倍数、最大公約数と最小公倍数

未解決 回答数: 0
物理 高校生

物理、水平ばね振り子の質問です。 問2の答えの下から6行目の「単振動の角振動数はω^2=k/mを満たす」のところなんですけどどうしてこの式になるのか教えてほしいです🙇‍♀️

SEOS 50. 水平ばね振り子 06分 ばね定数kの軽いばねの一端に質 量mの小物体を取り付け, あらい水平面上に置き, ばねの他端を 壁に取り付けた。図のようにx軸をとり, ばねが自然の長さのとき の小物体の位置を原点 0 とする。 ただし,重力加速度の大きさをg, 小物体と水平面の間の静止摩擦 係数を μ, 動摩擦係数をμ'′ とする。 また, 小物体はx軸方向にのみ運動するものとする。 0 問1 小物体を位置 x で静かにはなしたとき, 小物体が静止したままであるような, 位置xの最大値 XM を表す式として正しいものを、次の①~⑦のうちから1つ選べ。 ME 2006 ① ② (3) ③ 2μmg k μ'mg μ'mg ④0 (5) 6 ⑦ 2k k 問2 次の文章中の空欄ア・イに入れる式の組合せとして正しいものを,下の①~⑧のうちから 1つ選べ。 RYS [① (2 (3 μmg_ 2k 4 ア μ'mg 2k μ'mg 2k μ'mg 2k μmg k 問1の XM より右側で小物体を静かにはなすと, 小物体は動き始め、次に速度が0となったのは時 間が経過したときであった。 この間に, 小物体にはたらく力の水平成分 F は, 小物体の位置をx とするとF=-k(x-ア) と表される。 この力は, 小物体に位置アを中心とする単振動を生 じさせる力と同じである。 このことから,時間はイとわかる。 イ イ μ'mg 2k m π√ k 2π π m V k TV 2π k m k m (5) (6) (7) ⑧ ア μ'mg k μ'mg k μ'mg k μ'mg k π 2π π 2π. m k m k k m [2015 追試] k 3000000 k m m 2μ'mg k x [2018 本試]

回答募集中 回答数: 0
数学 高校生

青色のマーカー部分について教えて頂きたいです

X Clear 串 分割21 (令和….. 480 なぜこれらは 表記を変えているのでか? × 分割19 (第3... 解答 B CHART (1) Clear 00000 基本例題 112 互いに素に関する証明問題 (1) (4) nは自然数とする。 n+3は6の倍数であり, n+1は8の倍数であるとき、 n+9は24の倍数であることを証明せよ。 任意の自然数nに対して、連続する2つの自然数nとn+1は互いに素であ の方の解 ることを証明せよ。 (21はおさてんどん P.476 基本事項 (2) 基本111114 指針 (1)次のことを利用して証明する。a,b,kは整数とするとき く 生物 白紙法 a,bは互いに素で, akがもの倍数であるならば、はの倍数である。 n=ga,n+1=gb(a,bは互いに素 (2)nn+1は互いに とn+1の最大公約数は nとn+1の最大公約数をとすると この2つの式から消去して 9-1を導き出す。 ポイントは A.Bが自然数のとき, AB 1 ならば A=B=1 3-664 (k, は自然数)と表される。 n+9= (n+3)+6=6k+6=6(k+1) n+9 (n+1)+8=81+8=8(7+1) XO よって 6(k+1)=8(Z+1) すなわち 3 (k+1)=4(+1) 3と4は互いに素であるから,k+1は4の倍数である。 したがって, k+1=4m (m は自然数) と表される。 ゆえに n+9=6(k+1)=6.4m24m したがって n+9は24の倍数である。 (2)+1 最大公約数を」とすると ngan+1=gb (a,bは互いに素である自然数) と表される。 nga を n+1=gb に代入すると ga+1=gb すなわち (b-g) =1 9, a,bは自然数で,n<n+1 より b-a>0であるから g=1 よって, nとn+1の最大公約数は1であるから nとn+1 は互いに素である。 注意 (2)の内容に関連した内容を、 次ページの世で扱っている。 α b は 1 ak = bl ならば kの倍数の倍数 互いに素 [2] αとの最大公約数は1 としてもよい。 <n=ga, n+1=gb 積が1となる自然数はまだ けである。 99 (1) nは自然数とする。 n+5は7の倍数でありn+7は5の倍数であるとき、 112 +1235で割った余りを求めよ。 (2) nを自然数とするとき, 2n-1と2n+1は互いに素であることを示せ。 [ 中央大 (2) 広島修道大) p.484 EN7 X 大森徹遺伝問題・・・ Ć D Đ tlas CHART 互いに素であることの証明 X 基本例題13 互いに素に関する証明問題 (2) 00000 自然数a,bに対して, aとbが互いに素ならば、 α+b と ab は互いに素であるこ とを証明せよ。 P.476 基本事項 2 114 a+b abの最大公約数が1となることを直接示すのは糸口を見つけにくい。 そこで、背理法 (間接証明法)を利用する。 at babが互いに素でない、すなわち a+b と abはある素数』を公約数にもつ、と仮定して矛盾を導く。······· なお、次の素数の性質も利用する。ただし、 は整数である。 mnが素数の倍数であるとき、またはnはの倍数である。 45 5 最大公約数が1を導く [2] 背理法 (間接証明法) の利用 このとき、1+1は3の これはともが互いに素であることに矛盾している。 である。したがって bがpの倍数であるときも、同様にしては』の倍数であり、 4+1-3m² と表されるから、 aとbが互いに素であることに矛盾する。 +9-8-3m-24m したがって, a+babは互いに素である。 a+b と ab が互いに素でない、すなわちa+b と abはある素 を公約数にもつと仮定すると a+b=pk....... ①, ab=pl....... ② (k,は自然数) と表される。 ②から、またはもは♪の倍数である。 がpの倍数であるとき,a=pm となる自然数mがある。. このとき、①からbpk-a-pk-pm=pm となり もの倍数である。 第6講 4mとが互いに素でない とが数を公約 にもつ は © 113 (1) aとbが互いに素ならば、 da-pk-b -p(k-m') (mmは整数) 481 同様にして, nna(n+1)=n(n+1) (n+1) は異なる素因数を3個以上もつ、 この操作は無限に続けることができるから、素数は無限個存在する。 ※各自=2や3などの場合で、このことを検証してみるとよい。 4章 αbは自然数とする。 このとき、次のことを証明せよ。 とは互いに素である。 / (2) a+b と ab が互いに素ならば、ともは互いに素である。 17 前ページの基本例題112 (2) の結果 「連続する2つの自然数は互いに素である」は、整数 の問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 1 素数は無限個あることを証明せよ。 明n を2以上の自然数とする。 とn+1は互いに素であるから, n(n+1) は異な る素因数を2個以上もつ。 最大公約数と小数 素数が無限個あることの証明は、ユークリッドが発見した背理法を利用する方法が有名である が、上の証明は、21世紀に入って (2006年)。 サイダックによって提示された。 とても簡潔な方 法である。 ×

未解決 回答数: 1
英語 高校生

4行目の42パーセントがなぜ42になるのか分かりません。教えてください。

6 グラフと英文について問いに答えなさい。もの K There has been growth in the sales of computer and video game units in the United States for the past 12 years. Perhaps the largest growth was between [ ] and [ ], when the sales of computer and video game units increased about 42 percent. After 1998, there has been a steady increase in the sales except in ts sold than in []. In 2006, the US computer were fewer units [], when there were to and video game software sales grew six percent. none od oals U.S. Computer and Video Game DOLLAR Sales Growth orond noologa ORA 8.0 7.0 vien.n 7.0 -7.4 7.1 7.0 s or saoby 6.0 5.0 14.0 13.0 2.6-- 2.0 1.0 速読問題 43NTO 3.7. mouter and vi 4.8 computer STR. STEST 5.5-5.6... 6.1 【目標時間 5分 】 Talouno A-43 (関東学院大) (各4点) SMOO simsbine 320.0 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 0.0 .noitonitys asgougnal ) Jonitzs „299sugnal artito e Year oqe sdb 10 Ilse Tho bollbl ti jeste sdo tir 1. 本文の空所に入る年の最も適切な順番を示した組み合わせを1つ選びなさい。 idal ① 1996-1997-2004-2005 regorin 2 1996 - 1997 - 2005 - 2004 3 1997 - 1998 - 2004 - 2005 to nl241997 - 1998 - 2005 - 2004 gablesqa gnirlismoe orbi xim yam yod 10 mi 10 ogsugnal assinoloo 2. 本文の内容に一致するように、次の質問に対する最も適切な答えを1つ選びなさい。 no senso que parve pegeuren enorget to sum gels Sie wer From this article, how high would the bar for 2006 for the total number of W morb 100 98 10qa amepad slenIA video games be? Approximately the same height as 2005. 2 Shorter than 2005. 3 Taller than 2005. 033ghel to vio 4 tell. It is impossible to go this fod Bhixe ed or go sew tadi sesugn tell. a los ama zagsugnal sviten od on T srit ni nosloga asw dojdw.raimoƆ bollas syaugmel och tarb bisa quong 002 【2 スニング なさい。英文は2度読まれます。 Fived

回答募集中 回答数: 0