学年

質問の種類

生物 高校生

明日テストなのに 考察1、2、3全てよく分かりません。 教えてください、

第2章 細胞は、間期のS期 (DNA合成期)にDNAを正確に複製し、複製したDNA を、分 裂期に2つの細胞へ均等に分配している。ヒトなどの多細胞生物では、1個の受精卵 が体細胞分裂をくり返して個体を形成する。したがって、個体を構成する細胞は,す べて同じ DNA をもっている。 茶色 この染色体は、 了した。 色体は何 目が進む と、 (図 く正確に 細胞当たりの 体細胞分裂 -DNA 遺伝子とそのはたらき G期 S期 G (DNA合成準備期) (DNA合成期) (分裂準備期) 0 分裂期間期 (娘細胞) 図10 細胞周期におけるDNA量の変化 分裂前の細胞を母細胞といい、分裂によって新たに生じる細胞 を娘細胞という。 思考学習 細胞周期とDNA量 a 10 © 各細胞がもつ DNA量を調べるために,個々の細胞が発する蛍光の強さを細胞ごとに測 定したところ,細胞1個当たりの DNA量と細胞数の 関係は,図I のようになった。 体細胞分裂をくり返して増殖中の細胞の集団を取り出し, DNA と結合すると蛍光を発 する色素で各細胞を染色した。 このとき, 各細胞が発する蛍光の強さは,それぞれの細胞 内のDNA量を反映している。 600 A 15 考察 1. 細胞周期のG1 期 (DNA合成準備期), S期 400 細胞数(個) 染色体 分裂 E 20 (DNA合成期), G2 期 (分裂準備期), M 期 (分裂期) の細胞は,それぞれグラフのA, B, C のどの場所 に含まれていると考えられるか。 考察 2. この細胞集団では, G1 期, S期, G2期, M 期のうち、どの時期が一番長いと考えられるか。 考察 3. 考察2の推定をするためには, この細胞集団 200 0 Gzm 1 2 TinK 79 がどのような前提条件を満たしていなければならな いだろうか。 2つ答えよ。 □染色体石線、時期(長さ)→細胞の数 細胞当たりのDNA量 (相対値) ①図Ⅰ 細胞当たりのDNA量と細 胞数の関係

未解決 回答数: 0
数学 高校生

高次方程式に関して、紫で囲ったところについての質問です。まず、各項とも3次以上であると書かれているのですが、項は一つしかないと思います。どれらの項のことを各項と言っているのですか?また2次以下の項の係数を比較してとあるのですが、三次以上の項を無視できるのは、②の式がt(x)... 続きを読む

116 第2章 高次方程式 Think 例題 54 剰余の定理(2) [考え方 解答 **** (1)nを3以上の自然数とする.x" -1 を (x-1)3で割ったときの余り を求めよ. (2)x2+x15 +1 を x+1で割ったときの余りを求めよ. (1)x1=(x-1) Q(x)+ax²+bx+c このままでは何もできないので,x-1 が式変形でき ないか考える(x-1) に着目して, x-1 =t とおく x1 =t とおくと, 二項定理が利用できる. (二項定理については, p.21参照) (2)x=iで x2+1=0 となる. 実数係数の多項式の割り算での余りは実数係数の多 式である。 (1)3次式(x-1)で割ったときの商をQ(x) とすると,余りは 2次以下の多項式であるから、余りはax+bx+c とおける よって、 (t+1)-1=fQ(t+1)+α(t+1)+6(t+1)+c ...... ② 3次式で割るの で、余りは2次 以下の多項 解 Comme 1の の解で つまり この とす x-1 =t とおくと, x=t+1 より ①は, x-1=(x-1)2Q(x)+ax²+bx+c ②の左辺に二項定理を利用すると, (左辺)=,Cat+mCt' "Cat+„Caf'+nCit+"Co-1 =,Cat*+,C, "'++,Cf+n(n-1)t 2+nt ③ 2 C22 C=n n(n-1) n Co=1 また、②の(右辺)=Q(++1)+of+ (2a+b)t+a+b+c 多項式・Q(t+1)は各項とも3次以上である. ③④の2次以下の項の係数を比較して, ④4) とな a n(n-1) a= 2a+b=n,a+b+c=0 2 これらから a=- _n(n-1) b=-(n-2n),c=- n2-3n 余りは2次以 なので2次以下 の項のみに着目 する。 れる d 2 2 練習 よって, 求める余りは, n(n-1)x-(n²-2n)x+ 2 n²-3n 2 (2)2次式x+1で割ったときの商をQ(x), 余りをax+bとおく . x2 + x15+1=(x2+1)Q(x)+ax + b(a,bは実数) が成り立つ. これは恒等式であるから,両辺に x=i を代入すると, 1+1+1=(i+1)Q(i) + ai + b ... ① i=-1,=(i) =1, i=(i).i=-i より ① は, 2-i=b+ai となる. a b は実数であるから, よって、求める余りは, 注)微分法(第6章) を学習すると *** (6) *****, 54 **** a=-1,b=2 x+2 余りは1次以下 の多項式 =√-1 複素数の相等よ り 辺を微分した式も恒等式であることから,a,b,cの値を容易に求められる. xの恒等式 x-1=(x-1)Q(x)+ax²+bx+cの両 (1)を2以上の自然数とする.x" を (x-2)2で割ったときの余りを求めよ。 (2)2x'+x+1 を (x+1)(x-1)で割ったときの余りを求めよ. を

回答募集中 回答数: 0
数学 高校生

高一数学です。(2)がわかりません。なぜ絶対値なのに二乗するんですか?

基本 例題 43 対偶を利用した命題の証明 文字はすべて実数とする。 対偶を考えて,次の命題を証明せよ。 (1)x+y=2 ならば 「x≦1 または y≦1」 (2)2 +626 ならば 「|α+6|>1 または |α-6|>3」 CHART & SOLUTION 対偶の利用 00000 p.76 基本事項 6 2章 6 命題の真偽とその対偶の真偽は一致することを利用 (1)x+y=2 を満たすx, yの組 (x, y) は無数にあるから,直接証明することは困難であ る。そこで,対偶が真であることを証明し, もとの命題も真である, と証明する。 条件 「x≦1 または y≦1」 の否定は 「x>1 かつ y>1」 (2) 対偶が真であることの証明には、次のことを利用するとよい。 解答 A≧0, B≧0 のとき A≦B ならば A'≦B2 (p.118 INFORMATION 参照。) (1) 与えられた命題の対偶は 「x>1 かつ y>1」 ならば x+y=2 これを証明する。 x> 1, y>1 から x+y>1+1 すなわち x+y>2 よって, x+y=2 であるから, 対偶は真である。 したがって,もとの命題も真である。 麺 (2) 与えられた命題の対偶は 「la +6≦1 かつ a-b≦3」 ならば2+b2<6 これを証明する。 ←pg の対偶は g⇒ b ←x>a,y>b ならば x+y>a+b (p.54 不等式の性質) 0 論理と集合 = 0 される |a+6|≦1, |a-b≦3から (a+b)≤12, (a-6)²≤32 ←|A|=A2 >1 よって (a+b)2+(a-b)2≦1+9 ゆえに 2(a²+b²)≤10 よって a²+b²≤5 ゆえに、対偶は真である。 したがって,もとの命題も真である。 ← ' + b'≦5 と 56 から a2+62<6 S POINT 条件の否定条件p, gの否定を、それぞれp, gで表す。 かつ または -PNQ=PUQ またはq かつ PUQ=PnQ PRACTICE 43° 文字はすべて実数とする。 次の命題を, 対偶を (1)x+ya ば 「xa-b または y>b」 (2)xについての方程式 ax+b=0 がただ1つ して証明せよ。 もつならば

未解決 回答数: 0
生物 高校生

至急です!💦これの答えを教えてください。 お願いしま

生物 2編1章 章末まとめ 年 組 番 名前 用語の確認 1 アミノ酸のカルボキシ基と, アミノ酸のアミノ基が結合したCO- NH-で表される結合。 2 変形したタンパク質を認識して凝集を防ぐ細胞内のタンパク質。 3 化学反応が起こるときの反応前の物質と高いエネルギー状態にある反応 中間体とのエネルギーの差。 ! ケ '4 酵素が特定の基質のみにはたらきかける性質。 5 酵素反応を阻害する物質が, 活性部位とは異なる場所に結合することに よって, 阻害作用を引き起こすこと。 を 6 ある種の酵素が活性をもつために必要な低分子の有機物。 7 活性部位のほかに特定の物質が結合する部位をもち、その部位での結合 により活性が変化する酵素。 8 濃度の勾配に従った膜タンパク質の物質輸送。 9 エネルギーを使い, 濃度勾配に逆らった膜タンパク質の物質輸送。 10 細胞の内側で結合した Na* を細胞の外側へと放出し, 細胞の外側で結 合したK*を細胞の内側へと放出するはたらきをするポンプ。 4節 タンパク質の構造 11 |構造 二次構造 17 構造 16 アミノ酸 アミノ酸 ーペプチド- 結合 アミノ酸の基本構造 15 : 16 ポ 12 ポリペプチドの らせん状の構造。 リペプチドが平行 に並んだ構造。 15 R H-N+C+C-OH 19 HH O :高温やpHの変 13 14 (-NH2) (-COOH) 化で,立体構造が 変化し、タンパク 質のはたらきが失 われること 18 |構造

回答募集中 回答数: 0